
J. Math. Anal. Appl. 445 (2017) 1505–1515

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Arc length as a global conformal parameter for analytic curves

Vassili Nestoridis a, Athanase Papadopoulos b

a Department of Mathematics, University of Athens, 15784 Panepistemioupolis, Athens, Greece
b Institut de Recherche Mathématique Avancée (Université de Strasbourg et CNRS), 7 rue René 
Descartes, 67084 Strasbourg Cedex, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 November 2015
Available online 18 February 2016
Submitted by J.A. Ball

Dedicated to Professor Richard Aron 
on the occasion of his retirement 
from Kent State University

Keywords:
Analytic curve
Regular curve
Global parameter
Conformal parameter
Arc length
Analytic extension

We show that arc length is a global conformal parameter for analytic curves and 
that this parameter can be used to decide whether the domain of definition of an 
analytic curve can be extended or not. The maximal extension with respect to the 
arc length parameter is the largest possible extension (over all parametrizations of 
the curve). Our proof is elementary, simple and short. Several examples are given in 
the plane, and the results remain true for curves in an arbitrary Euclidean space Rk.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In [2], the authors consider a domain Ω bounded by a finite set of disjoint analytic Jordan curves, each 
one parametrized in a way compatible with a Riemann map from the open unit disc in the interior of this 
Jordan curve. They prove that generically in A∞(Ω), every function f is nowhere (real) analytic on the 
boundary of Ω with respect to the above parameter. They also prove that for any Jordan analytic curve 
γ : [0, 2π] → C with parameter t, a function f defined on the image of γ (and hence considered as a function 
of t) which is of class C∞ (that is, f ◦ γ is a C∞ function on [0, 2π]) is generically nowhere developable as a 
power series with variable t. A natural question which is addressed in the same paper is whether this set of 
C∞ functions with respect to t coincides or not with the set of C∞ functions with respect to arc length s, 
and whether the previous genericity result still holds with respect to s. This was the motivation for the 
present article. It turns out that the set of C∞ functions is the same for any conformal parameter of the 
curve and since we show that arc length s is a global conformal parameter for analytic curves, it is clear 
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that nothing changes in [2] if we replace t by s. In order to prove this, we are led to prove that arc length 
is a global conformal parameter for (not necessarily injective) analytic curves.

A curve γ = γ(t) is said to be (real) analytic with respect to some real parameter t if this curve is locally 
representable as a power series in the parameter t and its derivative does not vanish at any point. Such a 
curve is also termed regular analytic, the term “regular” referring to the fact that the derivative is nonzero. 
We shall omit this adjective in what follows. We say that the parameter t for such a curve is a conformal 
parameter. We mention that any such curve is locally injective but globally it may not be. Information 
about real analytic functions can be found in [4].

If a curve is analytic with respect to some parameter t, then any two analytic extensions (with respect 
to this parameter) are compatible and thus, a maximal extension with respect to t exists. For instance, the 
maximal extension of the curve exp1

t , −1 < t < −1
2 with respect to the parameter t is exp1

t , −∞ < t < 0. 
The image of this curve is the segment (0, 1) ×{0} ⊂ C. It may appear at first sight that when t approaches 
0− or −∞, the curve has two singularities. However, the segment (0, 1) may be continued to the whole real 
line R and the curve still be analytic, but with respect to some other (conformal) parameter; in particular 
with respect to the arc length parameter. This is a general fact: arc length can be used to decide whether an 
apparent singularity is essential or not; in the former case the curve cannot be extended. Also, the maximal 
extension of the curve with respect to the arc length parameter is the largest. We conclude that arc length 
is a global conformal parameter for any analytic curve.

The organization of the paper is as follows. Section 2 contains some preliminary results and definitions 
and ends with some observations on the maximal extension of an arbitrary planar analytic curve with 
respect to a specific parametrization. In Section 3, the main result is proven, that is, the fact that for an 
arbitrary planar analytic curve arc length is a global conformal parameter. The proof of this result is short 
and simple; a first undergraduate course in Complex Variables is sufficient to understand it. In Section 4, 
some examples are given where the maximal extension γ∗ : (A, B) → C of an analytic curve γ with respect 
to arc length is investigated. We give several examples where the limit sets at s → A+ or s → B− of γ∗(s)
can be singletons or circles in C ∪ {∞}.

After we circulated the first version of this paper [7], P. Gauthier informed us that for any connected 
compact subset L of C ∪{∞} we can construct an analytic curve γ : (A, B) → C such that L is the limit set 
at one endpoint A or B. We note that for a connected compact set K containing at least two points with 
empty interior and connected complement this result follows from the Riemann mapping theorem: Consider 
a conformal representation D : D → (C ∪ {∞}) \ K of the complement of this set, and take any analytic 
curve Γ in the disc D whose limit set is the unit circle (e.g. a curve spiraling to the boundary of the disc; 
cf. Example 4.4 below). Then D(Γ) is an analytic curve whose limit set is K. If we do not assume that 
the interior of K is empty, then the limit set is the frontier of K. We also give an example (Example 4.10) 
where the limit set is a compact set with nonempty interior. Finally, in Section 5, we extend our result to 
analytic curves in Rk.

2. Preliminaries

We start with the following well-known result, which is a particular case of a more general result on 
Riemann surfaces, cf. [3]. We include its proof for the purpose of completeness.

Lemma 2.1. Let a < b be two real numbers and Ω ⊂ C an open set containing [a, b]. Let φ : Ω ⊂ C be a 
holomorphic function such that φ′(t) �= 0 for all t ∈ [a, b] and φ|[a,b] is one-to-one. Then there is a convex 
open set V such that [a, b] ⊂ V ⊂ Ω and φ|V is one-to-one.

Proof. For every n = 1, 2, . . . we consider the convex open set

Vn = {z = x + iy ∈ C , a− 1
n
< x < b + 1

n
, |y| < 1/n}.
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