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In this paper, we prove that an n × n matrix A with independent centered 
subgaussian entries satisfies

sn+1−l(A) ≤ C1t
l√
n

with probability at least 1 −exp(−C2tl). This yields sn+1−l(A) ∼ cl√
n

in combination 
with a known lower bound. These results can be generalized to the rectangular 
matrix case.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Consider an n ×m real matrix A with n ≥ m. The singular values sk(A) of A, where k = 1, 2, · · · , n, are 
the eigenvalues of 

√
ATA arranged in non-increasing order. The non-asymptotic singular value distribution 

of random i.i.d. sub-gaussian matrix is an important and interesting subfield in random matrix theory. The 
first result in this direction was obtained in [6], where it was proved that the smallest singular value of a 
square i.i.d. sub-gaussian matrix is bounded below by n−3/2 with high probability. This result was later 
extended and improved in a number of papers, including [18,19,9,1,5]. The above mentioned results pertain 
to square matrices. A probabilistic lower bound for the smallest singular value of a rectangular matrix was 
obtained by M. Rudelson and R. Vershynin [10]. They proved that an n ×(n −l) matrix has smallest singular 
value lower bounded by εl√

n
with probability at least 1 − (Cε)l − exp(−Cn). Using this result, one can show 

that for a square i.i.d. sub-gaussian matrix A, sn+1−l(A) > c l√
n

with high probability.
However, the optimal upper bound of the singular values for general sub-gaussian matrices is unknown. 

Prior to this paper, the only progress in this direction was made by Szarek [17] who proposed an optimal 
upper bound for the gaussian matrix. Szarek proved that for a standard gaussian i.i.d. matrix G, Cl√

n
≤

sn+1−l(G) ≤ Cl√
n

with probability at least 1 − exp(−Cl2). This result suggests that lth smallest singular 
value of an i.i.d. sub-gaussian matrix is concentrated around l√

n
.
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Although the optimal upper bound is not proved for general matrices, some results can be deduced. 
T. Tao and V. Vu have established the universal behavior of small singular values in [19] (see Theorem 6.2 
[19]). Combined with Szarek’s Theorem 1.3 in [17], their approach allows us to deduce some non-asymptotic 
bounds for random i.i.d. square matrix under a moment condition. However, their bound only works for 
l ≤ nc where c is a small constant. Tao and Vu’s approach [19] is based on the Berry–Esseen Theorem 
for the frames and does not allow one to obtain exponential bounds for the probability as we do in our 
Theorem 1.6. Also, C. Cacciapuoti, A. Maltsev, B. Schlein estimated the rate of convergence of the empirical 
measure of singular values to the limit distribution near the hard edge (see [2] Theorem 3). Theorem 3 in [2]
can be used to derive an upper bound of the form cl

C
√
n

[2]. Better understood is the upper bound for the 
smallest singular value. M. Rudelson and R. Vershynin were the first to prove the smallest singular value of 
the i.i.d. sub-gaussian matrix is also bounded from above by c√

n
with high probability (see [8]). A different 

proof with an exponential tail probability can be found in a very recent paper by H. Nguyen and V. Vu [4].
In this paper, we prove the upper bound on the singular values under two assumptions: that the entries 

of the matrix are non-degenerate; and that they have a fast tail decay. The first assumption is quantified 
in terms of the Levy concentration function and the second is quantified in terms of the ψθ-norm. Next we 
provide definitions.

Definition 1.1. Let Z be a random vector that takes values in Cn. The concentration function of Z is defined 
as

L(Z, t) = sup
u∈Cn

P{‖Z − u‖2 ≤ t}, t ≥ 0.

Definition 1.2. Let θ > 0. Let Z be a random variable on a probability space (Ω, A, P). Then the ψθ-norm 
of Z is defined as

‖Z‖ψθ
:= inf

{
λ > 0 : E exp

(
|Z|
λ

)θ

≤ 2
}

If ‖X‖ψθ
< ∞, then X is called a ψθ random variable. This condition is satisfied for broad classes of 

random variables. In particular, a bounded random variable is ψθ for any θ > 0, a normal random variable 
is ψ2, and a Poisson variable is ψ1.

In this paper, we prove that for all l, sn+1−l(A) ≥ Ctl√
n

with an exponentially small probability, where A
is a random matrix under the following assumption:

Assumption 1.3. Let p > 0. Let A be an n ×m random matrix with i.i.d. entries that have mean 0, variance 1 
and ψ2-norm K. Assume also that there exists 0 < s ≤ s0(p, K) such that

L(Ai,j , s) ≤ ps.

Here, s0(p, K) is a given function depending only on p and K.

A concrete value of s0(p, K) can be determined by tracing the proof of Theorem 1.6.

Remark 1.4. The condition on the Levy concentration function is automatically satisfied if the density of 
the entries is bounded by p. However, our result holds in a much more general setting because we require 
this condition to hold only for one fixed s and not for all s > 0. This assumption can be viewed as a discrete 
analog of the bounded density condition.
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