

# Inverse problems for the differential operator on a graph with cycles 

Chuan-Fu Yang<br>Department of Applied Mathematics, School of Science, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, People's Republic of China

## A R T I C L E I N F O

## Article history:

Received 13 December 2015
Available online 12 January 2016 Submitted by D. Ryabogin

## Keywords:

Quantum graph
Inverse spectral problem
Inverse nodal problem


#### Abstract

This work deals with inverse problems of the Sturm-Liouville operator on a graph with multi-cycles, endowed with standard matching conditions in the internal vertex and with Neumann boundary conditions at the boundary vertices. We show that the potential on a graph with multi-cycles (including the potential on cycles) can be constructed by the dense nodal points on the interval considered. Moreover, we investigate the so-called incomplete inverse problems of recovering the potential on a fixed edge from a subset of nodal points situated only on a part of the edge.


© 2016 Elsevier Inc. All rights reserved.

## 1. Introduction

Consider a compact graph $G$ in $\mathbf{R}^{m}$ with the set of vertices $V=\left\{v_{0}, \ldots, v_{r}\right\}$ and the set of edges $\mathcal{E}=\left\{e_{1}, \ldots, e_{r}, e_{r+1}, \ldots, e_{r+r_{1}}\right\}$, where $v_{1}, \ldots, v_{r}$ are the boundary vertices, $v_{0}$ is the internal vertex, $e_{j}=\left[v_{j}, v_{0}\right], j=\overline{1, r}, \bigcap_{j=1}^{r+r_{1}} e_{j}=\left\{v_{0}\right\}$, and $e_{r+1}, \ldots, e_{r+r_{1}}$ are cycles. Thus, the graph $G$ has $r_{1}$ cycles $e_{r+1}, \ldots, e_{r+r_{1}}$ and one internal vertex $v_{0}$ (see Fig. 1). We suppose that the length of each edge is equal to 1 . Each edge $e_{j} \in \mathcal{E}$ is parameterized by the parameter $x \in[0,1]$; below we identify the value $x$ of the parameter with the corresponding point on the edge. It is convenient for us to choose the following orientation: for $j=\overline{1, r}$, the vertex $v_{j}$ corresponds to $x=0$, and the vertex $v_{0}$ corresponds to $x=1$; for $j=\overline{r+1, r+r_{1}}$, both ends $x=+0$ and $x=1-0$ correspond to $v_{0}$ (see Fig. 2).

An integrable function $Y$ on $G$ may be represented as $Y=\left\{y_{j}\right\}_{j=\overline{1, r+r_{1}}}$, where the function $y_{j}(x), x \in$ $[0,1]$, is defined on the edge $e_{j}$. Let $q=\left\{q_{j}\right\}_{j=\overline{1, r+r_{1}}}$ be an integrable real-valued function on $G ; q$ is called the potential. Consider the following differential equations on $G$ :

$$
\begin{equation*}
-y_{j}^{\prime \prime}(x)+q_{j}(x) y_{j}(x)=\lambda y_{j}(x), \quad j=\overline{1, r+r_{1}} \tag{1.1}
\end{equation*}
$$

[^0]

Fig. 1. Graph with multi-cycles.


Fig. 2. Oriented graph with multi-cycles.
where $\lambda$ is the spectral parameter, the functions $y_{j}, y_{j}^{\prime}, j=\overline{1, r+r_{1}}$, are absolutely continuous on $[0,1]$ and satisfy the following matching conditions in the internal vertex $v_{0}$ :

$$
\begin{cases}y_{j}(1)=y_{i}(0) & \text { (continuity condition) }  \tag{1.2}\\ \sum_{j=1}^{r+r_{1}} y_{j}^{\prime}(1)=\sum_{i=r+1}^{r+r_{1}} y_{i}^{\prime}(0) & \text { (Kirchhoff's condition) }\end{cases}
$$

where $j=\overline{1, r+r_{1}}, i=\overline{r+1, r+r_{1}}$. The matching conditions (1.2) are called the standard conditions. In electrical circuits, (1.2) expresses Kirchhoff's law; in elastic string networks, it expresses the balance of tension, and so on.

Let us consider the boundary value problem $B:=B(q)$ on $G$ for equations (1.1) with the matching conditions (1.2) and with Neumann boundary conditions at the boundary vertices $v_{1}, \ldots, v_{r}$ :

$$
\begin{equation*}
y_{j}^{\prime}(0)-h_{j} y_{j}(0)=0, \quad j=\overline{1, r}, \quad h_{j} \in \mathbb{R} . \tag{1.3}
\end{equation*}
$$

In Section 2 we discuss a direct problem: asymptotics of eigenvalues and the oscillation of components of eigenfunctions for the problem $B$. Section 3 deals with the inverse nodal problem of recovering the potential from any dense subset of the nodal points of the problem $B$. The uniqueness theorem and a constructive procedure for the solution are provided. In Section 4 we investigate the so-called incomplete inverse problems of recovering the potential on a fixed edge from a subset of nodal points situated only on a part of the edge.

A quantum graph is a metric graph, equipped with a differential operator that acts as $-\frac{d^{2}}{d x^{2}}+q$ on each bond, together with boundary conditions at the vertices chosen to make the operator self-adjoint (see [2,8-10] and references therein). Inverse problems for differential operators on graphs appear frequently in mathematics, natural sciences and engineering. In particular, direct and inverse problems for such operators

# https://daneshyari.com/en/article/4614004 

Download Persian Version:
https://daneshyari.com/article/4614004

## Daneshyari.com


[^0]:    E-mail address: chuanfuyang@mail.njust.edu.cn.
    http://dx.doi.org/10.1016/j.jmaa.2016.01.007
    0022-247X/© 2016 Elsevier Inc. All rights reserved.

