

Hardy-Rellich inequalities in domains of the Euclidean space

CrossMark

F.G. Avkhadiev
Lobachevsky Inst. of Math. and Mech., Kazan Federal University, Kremlevskaya str., 35, 420008, Kazan, Russia

A R T I C L E I N F O

Article history:
Received 13 January 2016
Available online 6 May 2016
Submitted by E. Saksman

Keywords:

Hardy-Rellich inequality
Non-convex domain
Uniformly perfect set

Abstract

For test functions supported in a domain of the Euclidean space we consider the Hardy-Rellich inequality: $\int|\Delta f|^{2} d x \geq C_{2} \int|f|^{2} \delta^{-4}(x) d x$, where $C_{2}=$ const ≥ 0 and $\delta(x)$ is the distance from x to the boundary of the domain. M.P. Owen proved that this inequality is valid in any convex domain with $C_{2}=9 / 16$ (M.P. Owen (1999) [21]). We examine the inequality in non-convex domains. It is proved that a positive constant C_{2} for a plane domain exists if and only if its boundary is a uniformly perfect set. For a domain of dimension $d \geq 2$ we prove that the inequality holds with the sharp constant $C_{2}=9 / 16$, if the domain satisfies an exterior sphere condition with certain restriction on the radius of the sphere. In addition, we obtain similar results for the inequality $\int \delta^{2}(x)|\Delta f|^{2} d x \geq C_{2}^{*} \int|f|^{2} \delta^{-2}(x) d x$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In 1954 F. Rellich (see [22]) proved the following inequality

$$
\begin{equation*}
\int_{\mathrm{R}^{d}}|\Delta f|^{2} d x \geq 2^{-4} d^{2}(d-4)^{2} \int_{\mathrm{R}^{d}}|f|^{2}|x|^{-4} d x \quad \forall f \in C_{0}^{\infty}\left(\mathrm{R}^{d} \backslash\{0\}\right) \tag{1}
\end{equation*}
$$

in the Euclidean space R^{d} for $d \geq 1, d \neq 2$, where Δf is the Laplacian of the test function $f: \mathrm{R}^{d} \backslash\{0\} \rightarrow$ C. In addition, Rellich showed that (1) is not valid for $d=2$, even if one replaces the corresponding constant 1 by an arbitrarily small constant $\varepsilon>0$. There are many papers by U.W. Schmincke, W. Allegretto, D.M. Bennett, E.B. Davies and A.M. Hinz, E. Mitidieri and other mathematicians (see, for instance, [23,1, $13,16,20,14]$ and the literature therein), where one can find direct generalizations of (1).

Much less is known about inequalities of type (1) in domains $\Omega \subset \mathrm{R}^{d}$ with weight functions depending on other geometric quantities, different from $|x|$. In this paper we will study the case when weight functions depend on the distance function $\operatorname{dist}(x, \partial \Omega)=\inf _{y \in \partial \Omega}|x-y|, x \in \Omega$. More precisely, we are concerned with the following analogue of (1) due to M.P. Owen [21] (see, also, $[12,11,17]$ for the same inequality with

[^0]remainders): Suppose that $d \geq 1$ and Ω is a convex domain in the Euclidean space $\mathrm{R}^{d}, \Omega \neq \mathrm{R}^{d}$. Then one has the following inequality
\[

$$
\begin{equation*}
\int_{\Omega}|\Delta f|^{2} d x \geq(9 / 16) \int_{\Omega}|f|^{2} \operatorname{dist}^{-4}(x, \partial \Omega) d x \quad \forall f \in C_{0}^{\infty}(\Omega) \tag{2}
\end{equation*}
$$

\]

The constant $9 / 16$ is optimal since it is sharp for the half-space $x_{1}>0$. Our aim is to study inequalities of type (2) in non-convex domains. More precisely, in an arbitrary domain $\Omega \subset \mathrm{R}^{d}$ we will consider the inequality

$$
\begin{equation*}
\int_{\Omega}|\Delta f|^{2} d x \geq C_{2}(\Omega) \int_{\Omega}|f|^{2} \operatorname{dist}^{-4}(x, \partial \Omega) d x \quad \forall f \in C_{0}^{\infty}(\Omega) \tag{3}
\end{equation*}
$$

with $C_{2}(\Omega)$ chosen as the maximal constant admissible at this place, i.e.

$$
C_{2}(\Omega):=\inf _{f \in C_{0}^{\infty}(\Omega), f \neq 0} \frac{\int_{\Omega}|\Delta f|^{2} d x}{\int_{\Omega}|f|^{2} \operatorname{dist}^{-4}(x, \partial \Omega) d x} \in[0, \infty) .
$$

The main aim of this paper is to study two natural problems related to inequality (3): a) find a criterion of positivity of the constant $C_{2}(\Omega)$ for two-dimensional domains; b) describe domains $\Omega \subset \mathrm{R}^{d}(d \geq 2)$, for which $C_{2}(\Omega)=9 / 16$. In addition, we will examine similar problems for the following inequality

$$
\begin{equation*}
\int_{\Omega} \operatorname{dist}^{2}(x, \partial \Omega)|\Delta f|^{2} d x \geq C_{2}^{*}(\Omega) \int_{\Omega}|f|^{2} \operatorname{dist}^{-2}(x, \partial \Omega) d x \quad \forall f \in C_{0}^{\infty}(\Omega) \tag{4}
\end{equation*}
$$

where $\Omega \subset \mathrm{R}^{d}$ is a domain and the constant $C_{2}^{*}(\Omega) \in[0, \infty)$ is chosen to be maximal at this place. It is to note that the main results of this paper are announced without proof in the short communication [5].

2. Criterion of positivity of $C_{2}(\Omega)$ for $\Omega \subset \mathbf{R}^{2}$

Let $\Omega \subset \mathrm{R}^{2}$ be a domain such that $\Omega \neq \mathrm{R}^{2}$. We do not suppose that Ω is bounded, and consequently, it is possible that the boundary set $\partial \Omega$ contains the point at infinity. By $\overline{\mathrm{R}}^{2}$ we will denote the extended plane (the Riemann sphere). Following L. Carleson and T.W. Gamelin [15], we say that the boundary $\partial \Omega$ is a uniformly perfect set in $\overline{\mathrm{R}}^{2}$, if the maximal conformal modulus $M(\Omega)$ is finite. Recall that $M(\Omega)$ is defined as follows: a) $M(\Omega)=0$, if Ω is a simply connected domain; b) $M(\Omega)$ is the conformal modulus of Ω, if Ω is a doubly connected domain; c) if $\partial \Omega$ has more than two components, then $M(\Omega)$ is the supremum of the conformal moduli $M\left(\Omega^{\prime}\right)$, where $\Omega^{\prime} \subset \Omega$ are doubly connected domains, separating $\partial \Omega$.

There are many other definitions and characterizations of uniformly perfect sets. Moreover, there is a connection with Hardy's inequalities. Namely, let $\Omega \subset \mathrm{R}^{2}$ be a domain such that $\Omega \neq \mathrm{R}^{2}$, and let $c_{2}(\Omega) \in[0, \infty)$ be the maximal constant in the Hardy inequality

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2} d x \geq c_{2}(\Omega) \int_{\Omega}|u|^{2} \operatorname{dist}^{-2}(x, \partial \Omega) d x \quad \forall u \in C_{0}^{\infty}(\Omega) \tag{5}
\end{equation*}
$$

It is known that the constant $c_{2}(\Omega)>0$ if and only if $\partial \Omega$ is a uniformly perfect set (see, for instance, $[2,24,3]$ and [18]).

We will also deal with the Euclidean maximal modulus $M_{0}(\Omega)$, defined by $M_{0}(\Omega)=\sup M(A), M(A)=$ $(2 \pi)^{-1} \ln \left(r_{2}(A) / r_{1}(A)\right)$, where the supremum is taken over all annuli

https://daneshyari.com/en/article/4614015

Download Persian Version:

https://daneshyari.com/article/4614015

Daneshyari.com

[^0]: E-mail address: avkhadiev47@mail.ru.
 http://dx.doi.org/10.1016/j.jmaa.2016.05.004
 0022-247X/© 2016 Elsevier Inc. All rights reserved.

