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We investigate four-dimensional CR submanifolds of the nearly Kähler sphere S6(1)
with nullity distribution of the maximal possible dimension two, and classify them 
using a sphere curve and a vector field along that curve.
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1. Introduction

It is well known that from the multiplication of the Cayley numbers O, there arises a cross product ×
in R7 = ImO and an almost complex structure on the standard unit sphere S6(1) ⊂ R

7 which makes it a 
nearly Kähler manifold. Its group of isometries is the exceptional Lie group G2.

It is natural to study submanifolds of the manifold with almost complex structure, with respect to 
that structure. If the tangent space of the submanifold is invariant for J , it is called an almost complex 
submanifold. If the tangent space is by J mapped into the corresponding normal space, it is called a totally 
real submanifold. A generalization of this is the notion of CR submanifold as introduced by A. Bejancu 
in [4].

A submanifold M of S6(1) is called a CR submanifold if there exists a C∞-differential almost complex 
distribution U : x → Ux ⊂ TxM , i.e. JU ⊂ U on M , such that its orthogonal complement U⊥ in TM is a 
totally real distribution, i.e. JU⊥ ⊂ T⊥M , where T⊥M is the normal bundle over M in S6(1). We say that 
M is proper if neither the almost complex, nor the totally real distribution are trivial. CR submanifolds have 
been previously studied amongst others by K. Mashimo, H. Hashimoto and K. Sekigawa (see [9] and [8]).

The four-dimensional CR submanifolds of S6(1) can not be totally geodesic. Therefore, it is natural to 
investigate submanifolds with nullity distribution
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D(p) = {X ∈ TpM |h(X,Y ) = 0, ∀Y ∈ TpM}, (1)

of the maximal possible dimension. In [5] the three-dimensional CR submanifolds of the sphere S6(1) with 
nullity distribution of the maximal dimension, which is one, were classified by constructions that start from 
one or two curves in S6(1). If the second fundamental form vanishes on a distribution, then it is called 
a totally geodesic distribution. In [3] a class of four-dimensional CR submanifolds that locally admit a 
particular kind of twisted product structure was investigated. It was shown that if A(t) is a curve in the Lie 
group G2 and f(u, v, w) a three-dimensional totally real submanifold of S6(1), then the map A(t)f(u, v, w), 
provided that it is an immersion, is a CR immersion. In particular, a four-dimensional CR submanifold of 
S6(1) having its totally real distribution totally geodesic and with a two-dimensional nullity distribution is 
locally congruent to the immersion

F1(y1, y2, y3, y4, s) = A(s)(y1, 0, y2, 0, y3, 0, y4), (2)

where y2
1 + y2

2 + y2
3 + y2

4 = 1, and the G2 curve A(s) is given by

A(s) =
(
γ, A3 × γ, A3, (A3 × γ′),×γ, A3 × γ′, γ′, −γ × γ′)(s)

where γ is a unit length sphere curve satisfying

A′
3 ×A3 ⊥ γ, γ × γ′, A3 − 〈A′

3, γ
′〉γ ⊥ γ′′ × γ′. (3)

Here, we prove the following theorem.

Theorem 1. Let M be a four-dimensional CR submanifold of the sphere S6(1) with a two-dimensional nullity 
distribution. Then it is locally congruent to the immersion (2) with conditions (3), or to the immersion

F (x1, x2, x3, s) = A(s)(sin x2, sin x1 cosx2, 0, cosx1 cosx2 cos f1, 0,
2√

4 + m2
cosx1 cosx2 sin f1,−

m√
4 + m2

cosx1 cosx2 sin f1),

where cosx1, cosx2 > 0, m is a constant, f1 is a function of x3 and s such that ∂x3f1 > 0, and A(s) is a 
G2-curve given by

A(s) =
(
L, L′, L× L′, B1, L×B1, L′ ×B1, −(L×B1) × L′)(s),

where L is a sphere curve parameterized by its arc length s, such that 〈L′′, L × L′〉 = 0, B1 is a unit vector 
field along L, orthogonal to L′′ × L such that 〈B′

1 ×B1, L〉 = 0 and 〈L′′ × L′, mB1 + 2L ×B1〉 = 0.

2. Preliminaries

The multiplication of the Cayley numbers O = R
8 can be used to define a vector cross product × on the 

set of the purely imaginary Cayley numbers R7 in the following way

u× v = 1
2(uv − vu).

This cross product has many similarities with the cross product in R3, for instance, the triple scalar 
product 〈u × v, w〉 is skew symmetric in u, v, w where 〈, 〉 denotes the standard inner product in the 
space R

7. Also, see [7], we have that
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