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We study a new type of nonlinear Schrödinger equation where the coefficient of 
Laplacian depends on spatial variable. Based on a modified Hankel transform and 
delicate frequency estimates, we establish the local well-posedness of the NLS with 
spatial variable coefficient in the weighted Lebesgue space for n ≥ 2, and extend the 
Strichartz estimates to the non-radially Schrödinger equation with spatial variable 
coefficient in 2D Euclidian space.
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1. Introduction and motivation

We consider the continuum model of n-spatial inhomogeneous Heisenberg ferromagnetic spin system 
(HFSS) with nearest-neighbor interaction, which can be written as

�St(x, t) = �(x)�S ×∇2�S + ∇�(x) · (�S ×∇�S). (1.1)

Here �(x) is a scalar function, x = (x1, x2, · · · , xn) is an n-dimension vector, and ∇2 = ∇ · ∇ is n-spatial 
Laplacian, while the spin �S = (Sx, Sy, Sz) is constrained by �S2 = 1. When � ≡ 1, it is known as the 
Schrödinger map (see [13,20–22] and references there for detail).

Choosing to study the dynamics of the spherically symmetric version, the corresponding equation of 
motion is

�St(r, t) = �(r)�S × [�Srr + n− 1
r

�Sr] + �r(r)[�S × �Sr], (1.2)

where r = (x2
1 + x2

2 + · · · + x2
n) 1

2 , 0 < r < ∞.
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Mapping the spin vector �S onto a moving helical space curve in R3 with curvature and torsion

κ(r, t) = [�Sr · �Sr]
1
2 , τ = κ−2�S · (�Sr × �Srr), (1.3)

the time evolution equations for the orthogonal trihedral are given by

�ejr = (τ�e1 + κ�e3) × �ej , �ejt = �ej × (ω1�e1 + ω2�e2 + ω3�e3), j = 1, 2, 3, (1.4)

where

ω1 = 1
κ

[�κrr + (n− 1
r

� + 2�r)κr − �κτ2 + (�rr + n− 1
r

�r −
n− 1
r2 �)κ],

ω2 = −[�κr + (�r + n− 1
r

�)κ],

ω3 = −�κτ.

Through a complex transformation

v(r, t) = κ

2 exp{i
r∫

0

τ(r′, t)dr′},

it leads to the following generalized nonlinear Schrödinger equations (GNLS):

ivt + �(vrr + n− 1
r

vr −
n− 1
r2 v + 2|v|2v)

+ 2�rvr + [�rr + n− 1
r

�r + 2
r∫

0

�r′ |v|2dr′ + 4(n− 1)
r∫

0

�

r′
|v|2dr′]v = 0. (1.5)

From the above geometrical approach, we obtain the spin evolution Equation (1.2) is equivalent to the 
GNLS (1.5). Through the Painlevé singularity structure analysis ([7]), the spherically symmetric spin system 
is integrable when the inhomogeneity

�(r) = ε1r
−2(n−1) + ε2r

−(n−2), (1.6)

where ε1, ε2 are arbitrary constants. In particular, when ε1 = 0, n = 2 and ε2 = 1, the GNLS (1.5) becomes 
classical NLS as

{
i∂tu(x, t) − Δu(x, t) = F (u),
u(x, 0) = u0(x). (1.7)

Motivated by the integrable model (1.5), as the first step, we try to exploit the well-posedness of the 
solution to the initial value problem (IVP) for the derived NLS equation with spatial variable coefficient:

{
ivt − rp0(vrr + p1

r vr − p2
r2 v) = f(r, v),

v(r, 0) = v0(r),
(1.8)

where v is a radial complex function, r = |x|(x ∈ R
n) is the radial radius and f is a nonlinear complex 

valued function, the index pm (m = 0, 1, 2) are independent of the variables r, t.
This paper is organized as follows: In Section 2, we mention the major results. In Section 3, we present the 

integral representation and crucial properties of the Hankel transform, which is the main tool for proving the 
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