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We study a diffusive predator–prey model of Lotka–Volterra type functional 
response in which both species obey the logistic growth such that the carrying 
capacity of the predator is proportional to the prey population and the one for 
prey is a constant. Both continuous and discrete diffusion are addressed. Our aim is 
to see whether both species can survive eventually, if an alien invading predator is 
introduced to the habitat of an existing prey. The answer to this question is positive 
under certain restriction on the parameter. Applying Schauder’s fixed point theory 
with the help of suitable upper and lower solutions, the existence of traveling wave 
solutions for this model is proven. Furthermore, by deriving the non-existence of 
traveling wave solutions, we also determine the minimal speed of traveling waves 
for this model. This provides an estimation of the invasion speed.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following diffusive predator–prey model

{
ut = uxx + ru(1 − u) − rkuv,

vt = dvxx + sv
(
1 − v

u

)
,

(1.1)

where the unknown functions u, v of (x, t), x, t ∈ R, stand for the population densities of prey and predator 
species at position x and time t, respectively, d, r, s, k are positive constants such that 1, d are diffusion 
coefficients and r, s are intrinsic growth rates of species u, v, respectively. The functional response of predator 
to prey is given by rku, which is of Lotka–Volterra type. The prey obeys the logistic growth and its carrying 
capacity is normalized to be 1. However, the density of predator follows a logistic dynamics with a varying 
carrying capacity proportional to the density of prey.

* Corresponding author.
E-mail addresses: chenyanyu24@gmail.com (Y.-Y. Chen), jsguo@mail.tku.edu.tw (J.-S. Guo), jamesookl@gmail.com

(C.-H. Yao).

http://dx.doi.org/10.1016/j.jmaa.2016.07.071
0022-247X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2016.07.071
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:chenyanyu24@gmail.com
mailto:jsguo@mail.tku.edu.tw
mailto:jamesookl@gmail.com
http://dx.doi.org/10.1016/j.jmaa.2016.07.071
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2016.07.071&domain=pdf


Y.-Y. Chen et al. / J. Math. Anal. Appl. 445 (2017) 212–239 213

In fact, the model (1.1) is a special case of the following Holling–Tanner type predator–prey model (cf. 
[24,25]): ⎧⎪⎨

⎪⎩
ut = uxx + ru(1 − u) − rku

a + bu
v,

vt = dvxx + sv
(
1 − v

u

)
,

when a = 1, b = 0. For the case when a = 0, b = 1, it is possible that the density of prey may vanish so 
that quenching or extinction phenomenon may occur. For this singular behavior, we refer the reader to 
[5,4,7,8,10] and the references cited therein.

It is easy to see that (1.1) has two constant steady states (1, 0) and (1/(1 + k), 1/(1 + k)). In [6], the 
authors studied the model (1.1) in a bounded domain with zero Neumann boundary condition. Among 
other things, by constructing a delicate Lyapunov function, they show that the unique positive constant 
state (1/(1 + k), 1/(1 + k)) is globally stable under certain restrictions on k. In other words, this constant 
state attracts every positive solution of (1.1) for the Neumann initial boundary value problem in a bounded 
domain. Since the predator will extinct if the prey vanish, the possibility of co-existence is very important 
from the ecological point view. For the case a = 1, b > 0, we refer the reader to [12–14].

In this paper, we consider the case when the habitat is the whole real line. We are interested in the 
question whether both species can survive eventually, if an alien predator is introduced into the habitat 
where a prey has been living there. In fact, this question is equivalent to whether the solution of (1.1)
tends to the unique positive constant steady state as the time approaches infinity. Therefore, we study the 
so-called traveling wave solution defined as follows.

A solution of (1.1) is called a traveling wave with speed c if there exist positive functions φ1 and φ2
defined on R such that u(x, t) = φ1(x + ct) and v(x, t) = φ2(x + ct). Here φ1 and φ2 are the wave profiles. 
Set z := x + ct and substitute (u, v)(x, t) = (φ1, φ2)(z) into (1.1). Then the wave profile (φ1, φ2) satisfies 
the following system of equations:⎧⎪⎨

⎪⎩
φ′′

1(z) − cφ′
1(z) + rφ1(z)[1 − φ1(z) − kφ2(z)] = 0, z ∈ R,

dφ′′
2(z) − cφ′

2(z) + sφ2(z)
[
1 − φ2(z)

φ1(z)

]
= 0, z ∈ R.

(1.2)

Here the prime denotes the derivative with respect to z. As described above, we are interested in the traveling 
wave solutions of (1.1) connecting (1, 0) and (1/(1 + k), 1/(1 + k)). This implies that (φ1, φ2) satisfies the 
following asymptotic boundary conditions

lim
z→−∞

(φ1, φ2)(z) = (1, 0), lim
z→+∞

(φ1, φ2)(z) =
(

1
1 + k

,
1

1 + k

)
. (1.3)

Note that the existence of such traveling wave solutions (with c > 0) means the successful invasion of the 
predator.

Biologically, it is also interesting to study the invasion speed. A constant c∗ is called the minimal speed 
of traveling waves, if there is a traveling wave of speed c for any c ≥ c∗ and no wave of speed c exists for 
c < c∗. The minimal speed of traveling waves plays an important role in the estimation of the invasion 
speed. We prove that the minimal speed of traveling wave solutions of (1.1) is given by c∗ := 2

√
ds. Notice 

that this minimal speed is independent of the parameters r and k.
In this paper, we also consider the following lattice dynamical system (LDS)

⎧⎪⎨
⎪⎩

dui

dt
= (ui+1 + ui−1 − 2ui) + rui(1 − ui − kvi), i ∈ Z,

dvi
dt

= d(vi+1 + vi−1 − 2vi) + svi

(
1 − vi

ui

)
, i ∈ Z,

(1.4)
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