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This paper establishes a generalized version of the singular perturbation results 
given by V. Hutson et al. [10, Theorem 4.1] and X. He and W.M. Ni [6, 
Theorem 4.2 (iii)]. In particular, it ascertains the limiting profiles of the coexistence 
states of the classical Lotka–Volterra model for two competing species as the 
diffusion coefficients approximate zero. They are provided by the global attractors 
of the underlying non-spatial model whenever they exist.
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1. Introduction

This paper studies the diffusive Lotka–Volterra competition model

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂t − d1Δu = λ(x)u− a(x)u2 − b(x)uv in Ω × (0,+∞),
∂v
∂t − d2Δv = μ(x)v − c(x)uv − d(x)v2 in Ω × (0,+∞),
∂u
∂ν = ∂v

∂ν = 0 in ∂Ω × (0,+∞),
u(·, 0) = u0 > 0, v(·, 0) = v0 > 0 in Ω,

(1)

where λ, μ, a, b, c, d ∈ C(Ω̄) with b, c ≥ 0, b �= 0 �= c, and

min
Ω̄

a > 0 and min
Ω̄

d > 0.
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Thus, intra-specific competition occurs everywhere in Ω̄. In this model, non-flux boundary conditions are 
imposed for each of the species by assuming that ∂u

∂ν = ∂v
∂ν = 0 on ∂Ω for all t > 0, where ν stands 

for the outward unit normal vector field along the habitat edges. The functions u0 and v0 stand for the 
initial population densities in the habitat Ω; both are positive in the sense that they are non-negative and 
somewhere positive. Problem (1) and some simple variants of it have been dealt with, e.g., in [4,6,7,10–13].

The main result of this paper is a substantial generalization of [10, Theorem 4.1] that provides us with 
a sharp relation between the dynamics of (1) and the dynamics of the associated kinetic problem obtained 
by switching off to zero the diffusion coefficients d1 and d2 in (1), i.e.,

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t = λ(x)u− a(x)u2 − b(x)uv in (0,+∞),
∂v
∂t = μ(x)v − c(x)uv − d(x)v2 in (0,+∞),
u(0) = u0(x) ≥ 0, v(0) = v0(x) ≥ 0,

(2)

where x ∈ Ω is regarded as a sort of label. Throughout this paper, Problem (2) is refereed to as the 
non-spatial model. It admits three types of non-negative steady-state solutions: the trivial one, (0, 0), the 
two semi-trivial steady states,

(u, v) =
(

λ(x)
a(x) , 0

)
and (u, v) =

(
0, μ(x)

d(x)

)
,

whenever λ(x) > 0 and μ(x) > 0, respectively, and the coexistence steady states, which acquire the form

(u, v) =
(

λ(x)d(x)−μ(x)b(x)
a(x)d(x)−b(x)c(x) ,

μ(x)a(x)−λ(x)c(x)
a(x)d(x)−b(x)c(x)

)
,

provided both components are positive and a(x)d(x) �= b(x)c(x). For every x ∈ Ω̄, the global dynamics of 
(2) are determined by the existence and linearized stability of the semi-trivial steady-state solutions. Thus, 
Ω̄ can be divided into the next six regions:

• The area where both species become extinct as a result of the local attractive character of (0, 0) and 
the non-existence of any other component-wise non-negative steady-state solution of (2):

Ωext :=
{
x ∈ Ω̄ : λ(x) ≤ 0 and μ(x) ≤ 0

}
. (3)

• The permanence region, i.e., the open subset of Ω̄ where both semi-trivial steady states exist and are 
linearly unstable:

Ωper :=
{
x ∈ Ω̄ : λ(x), μ(x) > 0, μ(x) > c(x)

a(x)λ(x), λ(x) > b(x)
d(x)μ(x)

}
. (4)

For every x ∈ Ωper, (2) possesses a unique coexistence steady state, which is a global attractor for all the 
component-wise positive solutions of the non-spatial model. This entails the low competition condition, 
b(x)c(x) < a(x)d(x).

• The bi-stability region, which is the open subset of Ω̄ where both semi-trivial steady states exist and 
are linearly stable:

Ωbi :=
{
x ∈ Ω̄ : λ(x), μ(x) > 0, μ(x) < c(x)

a(x)λ(x), λ(x) < b(x)
d(x)μ(x)

}
. (5)

For each x ∈ Ωbi, the high competition condition b(x)c(x) > a(x)d(x) holds and hence, the model 
possesses a unique coexistence steady state which is a saddle point. Consequently, founder control 
competition occurs. This entails b(x) > 0 and c(x) > 0.
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