

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Asymptotic profiles for the compressible Navier–Stokes equations in the whole space

Yoshiyuki Kagei^a, Masatoshi Okita^b

- ^a Faculty of Mathematics, Kyushu University, Nishi-ku, Motooka 744, Fukuoka 819-0395, Japan
- ^b National Institute of Technology, Kurume College, Kurume-shi, Komorino 1-1-1, Fukuoka 830-8555, Japan

ARTICLE INFO

Article history: Received 4 April 2016 Available online 3 August 2016 Submitted by K. Nishihara

Keywords: Compressible Navier–Stokes equations Asymptotic profiles Convergence rate

ABSTRACT

This paper is concerned with the large time behavior of strong solutions of the compressible Navier–Stokes equation in the whole space $\mathbb{R}^n (n \geq 3)$ around the constant state. It was shown by Kawashima, Matsumura and Nishida (1979) and Hoff and Zumbrun (1995) that the perturbation of the constant state is time-asymptotic to a solution of the linearized problem, that is, a first-order asymptotic profile. In this paper a second-order asymptotic profile of the solution, which is caused by the nonlinear effect, is given.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This paper studies the initial value problem for the compressible Navier–Stokes equation in \mathbb{R}^n , $n \geq 3$:

$$\begin{cases}
\partial_t \rho + \operatorname{div} m = 0, \\
\partial_t m + \operatorname{div} \left(\frac{m \otimes m}{\rho} \right) + \nabla P(\rho) = \mu \Delta(\frac{m}{\rho}) + (\mu + \mu') \nabla \operatorname{div} \left(\frac{m}{\rho} \right), \\
(\rho, m)(0, x) = (\rho_0, m_0)(x).
\end{cases} \tag{1}$$

Here t>0, $x={}^T(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$, and the superscript ${}^T\cdot$ stands for the transposition; the unknown functions $\rho=\rho(t,x)>0$ and $m=m(t,x)={}^T(m_1(t,x),m_2(t,x),\cdots,m_n(t,x))$ denote the density and momentum, respectively; $P=P(\rho)$ is the pressure that is assumed to be a function of the density ρ ; μ and μ' are the viscosity coefficients satisfying the conditions $\mu>0$ and $\frac{2}{n}\mu+\mu'\geq 0$; and div, ∇ and Δ denote the usual divergence, gradient and Laplacian with respect to x, respectively. The notation div $(\frac{m\otimes m}{\rho})$ means that its j-th component is given by div $(\frac{m_jm}{\rho})$.

We assume that $P(\rho)$ is smooth in a neighborhood of $\bar{\rho}$ with $P'(\bar{\rho}) > 0$, where $\bar{\rho}$ is a given positive constant.

E-mail address: m-okita@kurume-nct.ac.jp (M. Okita).

In this paper we investigate asymptotic properties of strong solutions of the problem (1) around the constant stationary solution $(\bar{\rho}, 0)$.

Matsumura and Nishida [6] showed the global in time existence of the solution of (1) for n = 3, provided that the initial perturbation $u_0 = {}^T(\gamma(\rho_0 - \bar{\rho}), {}^Tm_0)$, with $\gamma = \sqrt{P'(\bar{\rho})}$, is sufficiently small in $H^3(\mathbb{R}^3) \cap L^1(\mathbb{R}^3)$. Furthermore, the following decay estimates were obtained in [6]:

$$\|\nabla^k u(t)\|_{L^2} \le C(1+t)^{-\frac{3}{4}-\frac{k}{2}}, \quad k=0,1,$$
 (2)

where $u(t) = {}^{T}(\gamma(\rho - \bar{\rho}), {}^{T}m)$. (See also [7].) Kawashima, Matsumura and Nishida [4] proved that the solution is time asymptotic to the one of the linearized problem. It was shown in [4] that

$$||u(t) - G(t) * u_0||_{L^2} \le C(1+t)^{-\frac{3}{4}-\frac{1}{2}},$$

if u_0 is sufficiently small in $H^3(\mathbb{R}^3) \cap L^1(\mathbb{R}^3)$. Here $G(t) * u_0 = G(t, \cdot) * u_0$, where G(t, x) is Green's matrix for the linearized system at $T(\bar{\rho}, 0)$ for (1) and * denotes the convolution with respect to x. Hoff and Zumbrun [3] derived a more detailed description of the large time behavior of u(t) in L^p for all $1 \leq p \leq \infty$; the following estimates were established:

$$||u(t)||_{L^p} \le C \begin{cases} (1+t)^{-\frac{n}{2}(1-\frac{1}{p})}, & 2 \le p \le \infty, \\ (1+t)^{-\frac{n}{2}(1-\frac{1}{p})-\frac{n-1}{4}(1-\frac{2}{p})} L(t), & 1 \le p < 2, \end{cases}$$

and

$$||u(t) - G(t) * u_0||_{L^p} \le CL(t) \begin{cases} (1+t)^{-\frac{n}{2}(1-\frac{1}{p})-\frac{1}{2}}, & 2 \le p \le \infty, \\ (1+t)^{-\frac{n}{2}(1-\frac{1}{p})-\frac{n}{4}(1-\frac{2}{p})-\frac{1}{2}+\eta}, & 1 \le p < 2, \end{cases}$$

where η is any positive number. Here $L(t) = \log(1+t)$ when n=2, and is otherwise identically one. Moreover, it was proved in [3] that u(t) is time-asymptotic to the solution $\tilde{u}(t) = {}^{T}(\tilde{\sigma}, {}^{T}\tilde{m})$ of the following linear effective artificial viscosity system:

$$\begin{cases}
\partial_t \tilde{\sigma} + \gamma \operatorname{div} \tilde{m} - \frac{1}{2}(\mu_2 + \mu_1) \Delta \tilde{\sigma} = 0, \\
\partial_t \tilde{m} - \mu_1 \Delta \tilde{m} - \frac{1}{2}(\mu_2 - \mu_1) \nabla \operatorname{div} \tilde{m} + \gamma \nabla \tilde{\sigma} = 0,
\end{cases}$$
(3)

where $\mu_1 = \frac{\mu}{\bar{\rho}}$ and $\mu_2 = \frac{\mu + \mu'}{\bar{\rho}}$. More precisely, we have

$$||u(t) - \tilde{G}(t) * u_0||_{L^p}, ||u(t) - \tilde{G}(t, \cdot) \int u_0 dx||_{L^p}$$

$$\leq CL(t) \begin{cases} (1+t)^{-\frac{n}{2}(1-\frac{1}{p})-\frac{1}{2}}, & 2 \leq p \leq \infty, \\ (1+t)^{-\frac{n}{2}(1-\frac{1}{p})-\frac{n}{4}(1-\frac{2}{p})-\frac{1}{2}+\eta}, & 1 \leq p < 2, \end{cases}$$

for any positive constant η , where \tilde{G} is Green's matrix for (3). We also mention that Kobayashi and Shibata [5] proved the following estimates

$$\|\partial_t^j \partial_x^{\alpha} G_1(t,x)\|_{L^p(\mathbb{R}^n_x)} \le C(1+t)^{-\frac{n}{2}(1-\frac{1}{p})-\frac{j+|\alpha|}{2}}$$

for $2 \le p \le \infty$, and

$$\|\partial_t^j \partial_x^{\alpha} G_1(t,x)\|_{L^p(\mathbb{R}^n_x)} \le C \begin{cases} (1+t)^{-\frac{n}{2}(1-\frac{1}{p})-\frac{n-1}{4}(1-\frac{2}{p})-\frac{j+|\alpha|}{2}}, & n \ge 3 \text{ and } n: \text{ odd,} \\ (1+t)^{-\frac{n}{2}(1-\frac{1}{p})-\frac{n}{4}(1-\frac{2}{p})-\frac{j+|\alpha|}{2}}, & n \ge 2 \text{ and } n: \text{ even,} \end{cases}$$

Download English Version:

https://daneshyari.com/en/article/4614053

Download Persian Version:

https://daneshyari.com/article/4614053

<u>Daneshyari.com</u>