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1. Introduction

Let N > 1 be a positive integer and € RV be a bounded domain with piecewise smooth boundary T.
We denote by 1 the outward unit normal vector to I'. Let ¢ > 0 be a real number and define
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Let H™(§), m = 0,1 denote the usual Sobolev spaces (see [2]). Using the method of controllability
presented in [7] it was shown in [6] that if I is a piecewise smooth with no cuspidal points then there
exists T' > diam(Q2), sufficient large, such that for any (ug,u;) € H' () x L*(Q) there exists a control h in
L3(T" x [0,T]) which makes the solution of the problem

Lu=0 in Q% [0,T], (1)
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u(.,0) = ug, u(.,0) =uy in Q, (2)
g%:h in I % [0,77, (3)

to satisfy the final condition
u(,T)=0=u(.,T) in €. (4)

By making use of a trace theorem presented in [8,1] it was possible to guarantee that the control function
h is square integrable on surface I' x [0,T]. We remark that in [6] it was not possible to specify how great
is T', but in applications it is important to estimate it. In the present work the main goal is to prove that
the time 7" in the control problem (1)—(4) may be reduced to any value T' > diam(2). This is achieved by
showing that for the solution u of the Cauchy problem

Lu=0 in RN x R, (5)

u(,O) = Uo, ut('70) =u in RNv (6)

the mapping t — (u(.,t), us(., t)) has analytic extension to a region of the complex plane. This argument has
been used in [5] for the even dimensional wave equation with smooth initial data. In that paper the author
extended the mapping ¢t — (u(.,t),u(.,t)) analytically to the complex sector g = {{ =Ty + 2, |arg(z)] <
w/4}, where Ty is any constant greater than the diameter of a bounded domain which contains the support
of the initial data.

The main results of the present paper are the following two theorems.

Theorem 1.1. Let U C RN, N > 1, be a bounded domain and Ty > diam(U) a real number. If u(.,t) is the
solution of the Cauchy problem (5)—(6) with initial state (u(.,0),u.(.,0)) € HY(RY) x L2(RN) compactly
supported in U then the map t — (u(.,t),us(.,t)) extends analytically to the sector 3o = {¢ = To + z,
larg(z)] < w/4}.

Theorem 1.2. Let Q be a bounded domain of RY, N > 1 with boundary I piecewise smooth with no cuspidal
points. We also assume that €2 is on the same side of its boundary, case N = 1 we just require €1 to be a
bounded interval. For any T > diam(RY), given (ug,u1) € HY(Q) x L3(Q) there exists a control function
h € L3(T x [0,T)) such that the solution of (1)-(3) satisfies the final state (/).

To prove the Theorem 1.2 we use the Theorem 1.1, local energy decay ([6], Theorem 2.1) and an alternative
theorem due to F.V. Atkinson (see, [4], p. 370) to reduce the time of control T to values near diam(S).

The rest of this paper is organized as follows. The Section 2 is devoted to developing the necessary tools
to prove the main results. Section 3 is devoted to prove the Theorem 1.1 and in Section 4 we prove the
Theorem 1.2.

2. Preliminaries

Let U C RN, N > 1 be a bounded domain and (ug,u1) € HY(RY) x L?(RY) initial data supported in U.
In [6] it was established that for ¢ > diam(U) and = € U the solution of the Cauchy problem (5)—(6) is
given explicitly by the formulas bellow:
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