

Contents lists available at ScienceDirect

## Journal of Mathematical Analysis and Applications



www.elsevier.com/locate/jmaa

## Ideal invariant injections



Marek Balcerzak, Szymon Głąb<sup>1</sup>, Jarosław Swaczyna\*

Institute of Mathematics, Łódź University of Technology, ul. Wólczańska 215, 93-005 Łódź, Poland

ABSTRACT

ARTICLE INFO

Article history: Received 30 September 2015 Available online 5 August 2016 Submitted by M. Laczkovich

Keywords: Ideals on  $\omega$  Ideal invariant injections Ideal convergence

For an ideal  $\mathcal{I}$  on  $\omega$ , we introduce the notions of  $\mathcal{I}$ -invariant and bi- $\mathcal{I}$ -invariant injections from  $\omega$  to  $\omega$ . We study injections that are invariant with respect to selected classes of ideals. We show some applications to ideal convergence.

© 2016 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let  $\omega := \{0, 1, \dots\}$ ,  $\mathbb{Z}$  stands for the set of all integers, and id is the identity function on  $\omega$ . By an ideal  $\mathcal{I}$  on  $\omega$  we mean an ideal of subsets of  $\omega$  such that  $\omega \notin \mathcal{I}$  and  $\{n\} \in \mathcal{I}$  for all  $n \in \omega$ . If  $\mathcal{I}$  is an ideal on  $\omega$  then  $\mathcal{I}^*$  denotes its dual filter  $\{\omega \setminus A : A \in \mathcal{I}\}$ . Several examples of ideals on  $\omega$  were considered in [8] (see also [16,18] and [14]). The ideal of all finite subsets of  $\omega$  is denoted by Fin.

Through the paper, we will work with injections from  $\omega$  to  $\omega$ . The set of all such injections will be denoted by **Inj**. Fix an ideal  $\mathcal{I}$  on  $\omega$  and let  $f \in \mathbf{Inj}$ . We say that f is  $\mathcal{I}$ -invariant if  $f[A] \in \mathcal{I}$  for all  $A \in \mathcal{I}$ . We say that  $f^{-1}$  is  $\mathcal{I}$ -invariant if  $f^{-1}[A] \in \mathcal{I}$  for all  $A \in \mathcal{I}$ . If f and  $f^{-1}$  are  $\mathcal{I}$ -invariant then f is called bi- $\mathcal{I}$ -invariant. Note that every  $f \in \mathbf{Inj}$  is bi-Fin-invariant.

We start from easy facts and simple examples.

**Fact 1.** Let  $\mathcal{I}$  be an ideal on  $\omega$  and let  $f \in \mathbf{Inj}$ .

- (i)  $f^{-1}$  is  $\mathcal{I}$ -invariant if and only if  $f[A] \notin \mathcal{I}$  for every  $A \notin \mathcal{I}$ .
- (ii) If  $f[\omega] \in \mathcal{I}$  then f is  $\mathcal{I}$ -invariant and it is not bi- $\mathcal{I}$ -invariant.

<sup>\*</sup> Corresponding author.

E-mail addresses: marek.balcerzak@p.lodz.pl (M. Balcerzak), szymon.glab@p.lodz.pl (S. Głąb), jswaczyna@wp.pl

<sup>(</sup>J. Swaczyna).

The second author has been supported by the National Science Centre Poland Grant no. DEC-2012/07/D/ST1/02087.

**Proof.** (i) " $\Rightarrow$ " Let  $A \notin \mathcal{I}$  and suppose that  $f[A] \in \mathcal{I}$ . Then  $A = f^{-1}[f[A]] \in \mathcal{I}$ , a contradiction.

"\(\infty\)" Assume that  $f[A] \notin \mathcal{I}$  for every  $A \notin \mathcal{I}$ . Suppose that  $f^{-1}$  is not  $\mathcal{I}$ -invariant. Hence  $f^{-1}[B] \notin \mathcal{I}$  for some  $B \in \mathcal{I}$ . Then  $B \supseteq f[f^{-1}[B] \notin \mathcal{I}$ , a contradiction.

(ii) The first part is obvious, and the second part follows from  $f^{-1}[f[\omega]] = \omega \notin \mathcal{I}$ .  $\square$ 

To show an example based on Fact 1(ii), recall the definition of the classical density ideal  $\mathcal{I}_d$ . For a set  $A \subseteq \omega$ , consider the following numbers

$$\underline{d}(A) := \liminf_{n \to \infty} \frac{|A \cap \{0, \dots, n-1\}|}{n} \;, \quad \overline{d}(A) := \limsup_{n \to \infty} \frac{|A \cap \{0, \dots, n-1\}|}{n} \;.$$

If  $\underline{d}(A) = \overline{d}(A)$ , we denote this common value by d(A) and call the asymptotic density of A. Then define  $\mathcal{I}_d := \{A \subseteq \omega \colon \overline{d}(A) = 0\}.$ 

Note that every increasing injection is  $\mathcal{I}_d$ -invariant. In particular,  $f(n) := n^2$  is  $\mathcal{I}_d$ -invariant. Moreover, in this case  $f[\omega] \in \mathcal{I}_d$ . Hence f is not bi- $\mathcal{I}_d$ -invariant by Fact 1(ii).

The next example shows an ideal  $\mathcal{I}$  on  $\omega$  and a bijection f from  $\omega$  onto  $\omega$  which is  $\mathcal{I}$ -invariant but  $f^{-1}$  is not so. If  $k, l \in \omega$  and k > 0, we denote  $k\omega + l := \{kn + l : n \in \omega\}$ .

**Example 2.** Let  $f: \omega \to \omega$  be given by the formulas: f(2n) := 4n, f(4n+1) = 4n+2, f(4n+3) := 2n+1 for  $n \in \omega$ . Then f is a bijection. Consider the ideal  $\mathcal{I}$  defined as follows

$$\mathcal{I} := \{ A \cup B \colon A \in \operatorname{Fin}, \ B \subseteq 2\omega \}.$$

Clearly, f is  $\mathcal{I}$ -invariant. Note that  $4\omega + 1 \notin \mathcal{I}$  but  $f[4\omega + 1] \in \mathcal{I}$ . Let  $B := f[4\omega + 1]$ . Then  $B \in \mathcal{I}$  and  $f^{-1}[B] \notin \mathcal{I}$ .  $\square$ 

An ideal  $\mathcal{I}$  on  $\omega$  is called *tall* if every infinite subset of  $\omega$  contains an infinite set belonging to  $\mathcal{I}$  (see [8]). Note that the ideal in the Example 2 is not tall. The respective example with a tall ideal will be presented in Section 4.

For  $f: \omega \to \omega$  let  $Fix(f) := \{n \in \omega : f(n) = n\}$ . The following fact is obvious.

**Fact 3.** Let  $\mathcal{I}$  be an ideal on  $\omega$  and  $f \in \mathbf{Inj}$ . If  $\mathrm{Fix}(f) \in \mathcal{I}^*$  then f is bi- $\mathcal{I}$ -invariant.

The purpose of our paper is to describe  $\mathcal{I}$ -invariant and bi- $\mathcal{I}$ -invariant injections for selected classes of ideals. In some cases, we also study topological features of the sets of such injections. It is easy to see that  $\mathbf{Inj}$  is a  $G_{\delta}$  subset of the Baire space  $\omega^{\omega}$  (cf. [24, p. 66]), so it is a Polish space, by the Alexandrov theorem. Sets of the form  $\{f \in \mathbf{Inj}: f(k_i) = l_i \text{ for } i = 1, \ldots, p\}$  constitute a base of the topology in  $\mathbf{Inj}$ . We are interested in the Baire category and levels of the Borel hierarchy for the sets of  $\mathcal{I}$ -invariant and bi- $\mathcal{I}$ -invariant injections in the space  $\mathbf{Inj}$ .

**Proposition 4.** The set  $\{f \in \mathbf{Inj} : \omega \setminus \mathrm{Fix}(f) \in \mathrm{Fin}\}\$ is dense in  $\mathbf{Inj}$ . In particular, the set  $\{f \in \mathbf{Inj} : f \$ is bi- $\mathcal{I}$ -invariant $\}$  is dense in  $\mathbf{Inj}$  for every ideal  $\mathcal{I}$  containing all singletons. Moreover, if  $\mathcal{I}$  contains infinite sets and all singletons, the set  $\{f \in \mathbf{Inj} : f \$ is not  $\mathcal{I}$ -invariant $\}$  is dense in  $\mathbf{Inj}$  as well.

**Proof.** Let  $V := \{ f \in \mathbf{Inj} : f(k_i) = l_i \text{ for } i = 1, \dots, p \}$  be a basic set. To prove the first assertion, define  $g : \omega \to \omega$  as follows. Pick  $n \in \omega$  such that  $k_i \leq n$  and  $l_i \leq n$  for  $i = 1, \dots, p$ . Put  $g(k_i) := l_i$  for  $i = 1, \dots, p$  and extend g on  $\{0, \dots, n\}$  to be a bijection of this set onto itself. Finally put g(k) := k for k > n. Then  $g \in V$  and  $\omega \setminus \mathrm{Fix}(g) \in \mathrm{Fin}$ . Next use Fact 3.

To prove the second assertion, fix distinct  $k_1, \ldots, k_p \in \omega$  and distinct  $l_1, \ldots, l_p \in \omega$ . Set  $B := \{k_1, \ldots, k_p, l_1, \ldots l_p\}$  and consider a bijection h from B onto itself that  $h_1(k_i) = l_i$  for  $i \in \{1, \ldots, p\}$ .

### Download English Version:

# https://daneshyari.com/en/article/4614060

Download Persian Version:

https://daneshyari.com/article/4614060

<u>Daneshyari.com</u>