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We consider steady state reaction diffusion equations on the exterior of a ball, 
namely, boundary value problems of the form:

⎧⎪⎨⎪⎩
−Δpu = λK(|x|)f(u) in ΩE ,

u = 0 on |x| = r0,

u → 0 when |x| → ∞,

where Δpz := div(|∇z|p−2∇z), 1 < p < n, λ is a positive parameter, r0 > 0 and 
ΩE := {x ∈ R

n | |x| > r0}. Here the weight function K ∈ C1[r0, ∞) satisfies K(r) >
0 for r ≥ r0, limr→∞ K(r) = 0, and the reaction term f ∈ C[0, ∞) ∩ C1(0, ∞) is 
strictly increasing and satisfies f(0) < 0 (semipositone), lim sups→0+ sf ′(s) < ∞, 
lims→∞ f(s) = ∞, lims→∞

f(s)
sp−1 = 0 and f(s)

sq is nonincreasing on [a, ∞) for some 
a > 0 and q ∈ (0, p − 1). For a class of such steady state equations it turns out 
that every nonnegative radial solution is strictly positive in the exterior of a ball, 
and exists for λ 	 1. We establish the uniqueness of this positive radial solution for 
λ 	 1.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Study of semipositone problems, namely, the analysis of positive solutions to boundary value problems 
of the form: {

−Δpu = λf̃(u) in D,

u = 0 on ∂D,
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where Δpz := div(|∇z|p−2∇z), p > 1, λ is a positive parameter, D is a bounded domain in Rn, n > 1
and f̃ ∈ C[0, ∞) with f̃(0) < 0, f̃ nondecreasing and lims→∞ f̃(s) = ∞, has been of significant interest 
in the mathematical community for the past twenty five to thirty years. It has been well documented in 
the history that the analysis of such nonlinear eigenvalue problems for positive solutions when f̃(0) < 0 is 
very challenging. The focus in this paper is in the case when lims→∞

f̃(s)
sp−1 = 0 (p − 1 sublinear growth at 

infinity). For this case, for existence results for λ � 1, see [2,10] when p = 2, and [8,9,13] when p > 1. For 
uniqueness results, see [1,11] when D is a ball and p = 2, [3] when D is a bounded domain and p = 2, and 
[8] when D is a ball and p > 1. When D is a bounded domain and p > 1, this question on uniqueness still 
remains unsettled.

Recently, this study of semipositone problems has been considered on domains exterior to a ball when 
1 < p < n. Namely, to problems of the form:

⎧⎪⎪⎨⎪⎪⎩
−Δpu = λK(|x|)f(u) in ΩE ,

u = 0 on |x| = r0,

u → 0 when |x| → ∞,

(1)

where r0 > 0 and ΩE := {x ∈ R
n | |x| > r0}. Here f ∈ C[0, ∞) ∩ C1(0, ∞) and K ∈ C1[r0, ∞) satisfy:

(H1) f(0) < 0 (semipositone),
(H2) lim sups→0+ sf ′(s) < ∞,
(H3) f ′ > 0 on (0, ∞) and f(s) → ∞ as s → ∞,
(H4) lims→∞

f(s)
sp−1 = 0,

(H5) K(r) > 0 for r ≥ r0 and there exist d̃ > 0 and σ ∈ (0, n−p
p−1 ) such that K(r) ≤ d̃

rn+σ for r � 1.

In particular, see [12,15] where the existence of positive radial solutions was established for λ � 1 (see also 
[6] where this study has been extended without restricting to the case of radial solutions).

The main goal of this paper is to establish the uniqueness of this radial solution when λ � 1 under the 
following additional assumptions:

(H6) there exist q ∈ (0, p − 1) and a > 0 such that f(s)
sq is nonincreasing on [a, ∞),

(H7) r
p(n−1)
p−1 K(r) is strictly increasing on [r0, ∞).

Namely, we prove:

Theorem 1.1. Assume (H1)–(H7) hold. Then (1) has a unique positive radial solution for λ � 1.

We note that by using the change of variables r = |x| and t =
(

r
r0

)n−p
1−p , study of (1) can be reduced to 

analyzing the two point boundary value problem of the form:

{
− (ϕp(u′(t)))′ = λh(t)f(u(t)), t ∈ (0, 1),

u(0) = 0 = u(1),
(2)

where ϕp(s) := |s|p−2s and h(t) :=
(

p−1
n−p

)p

rp0t
p(1−n)
n−p K

(
r0t

1−p
n−p

)
. Then h ∈ C1(0, 1] since K ∈ C1[r0, ∞). 

By (H5) and (H7) we have that h is strictly decreasing, h := inft∈(0,1] h(t) > 0 and there exist d > 0 and 
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