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In this article we are considering the one-dimensional equations of a homogeneous
and isotropic porous elastic solid with Kelvin–Voigt damping. We prove that 
the semigroup associated with the system (1.3) with Dirichlet–Dirichlet boundary 
conditions or Dirichlet–Neumann boundary conditions is analytic and consequently 
exponentially stable. On the other hand, we prove that the system (1.3) with 
Dirichlet–Neumann boundary conditions has lack of exponential decay and it decays 
as 1√

t
for the case γ1 > 0, γ2 = 0 or γ1 = 0, γ2 > 0. Moreover, we prove that this 

rate is optimal. We apply the main results for the Timoshenko model.
© 2016 Published by Elsevier Inc.

1. Introduction

Due to huge applications of smart materials in modern technology, there has been an abundance of 
literature on the study of elastic system with viscoelastic damping (see [2]). When a smart material is 
added in an elastic structure, the Young’s modulus, the mass density and the damping coefficients are 
changed accordingly. Practically, two types of viscoelastic damping are usually used. One is the Botzmann 
damping and another is the Kelvin–Voigt damping (see [6,7]). These kinds of dampings, on one hand, make 
the distributed control practically possible, and on the other hand, bring some new mathematical challenges 
that attract an increasing research interests.

Elastic solids with voids is one of the simple extensions of the theory of classical elasticity. It allows the 
treatment of porous solids in which the matrix material is elastic and the interstices are void of material. 
Goodman and Cowin [5] introduced the concept of a continuum theory of granular materials with interstitial 
voids. Besides the usual elastic effects, these materials have a microstructure with an important property: 
the mass in each point can be obtained as the product of the mass density of the material matrix by the 
volume fraction. This idea was developed by Nunziato and Cowin [11] to propose a nonlinear theory of elastic 
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materials with voids. That is materials where the skeletal or matrix material is elastic and the interstices 
are void of material.

With this in mind, in the present work, we are concerned with the analyticity, lack of exponential decay 
and optimal polynomial decay rate for one-dimensional equations of a homogeneous and isotropic porous 
elastic solid with Kelvin–Voigt damping. To start, let us consider the following evolution equations in 
one-dimensional case {

ρutt = Tx,

Jφtt = Hx + G.
(1.1)

Here T is the stress, H is the equilibrated stress and G is the equilibrated body force. The variables u and φ
represent the displacement of a solid elastic material and the volume fraction, respectively. The constitutive 
equations are

⎧⎪⎨
⎪⎩

T = μux + γ1utx + bφ,

H = δφx + γ2φtx,

G = −bux − ξφ.

(1.2)

Then substituting (1.2) into (1.1), we have
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρutt − (μux + γ1utx)x − bφx = 0 in (0, L) × (0,∞),
Jφtt − (δφx + γ2φtx)x + bux + ξφ = 0 in (0, L) × (0,∞),

(u(x, 0), φ(x, 0)) = (u0(x), φ0(x)), in (0, L),
(ut(x, 0), φt(x, 0)) = (u1(x), φ1(x)), in (0, L).

(1.3)

To this system we add Dirichlet–Dirichlet boundary conditions

u(0, t) = u(L, t) = φ(0, t) = φ(L, t) = 0, t > 0 (1.4)

or Dirichlet–Neumann boundary conditions

u(0, t) = u(L, t) = φx(0, t) = φx(L, t) = 0, t > 0 (1.5)

where ρ, μ, J , δ, b, ξ, γ1 and γ2 are the constitutive coefficients whose physical meaning is well known. The 
constitutive coefficients, in one-dimensional case, satisfy

ξ > 0, δ > 0, μ > 0, ρ > 0, J > 0, μξ ≥ b2, and γ1, γ2 ≥ 0. (1.6)

As coupling is considered, b must be different from 0, but its sign does not matter in the analysis.
It is worth mentioning some papers in connection with the goal of our article. In [15] R. Quintanilla 

studied the following system
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρutt − μuxx − bφx = 0 in (0, L) × (0,∞),
Jφtt − δφxx + bux + τφt + ξφ = 0 in (0, L) × (0,∞),
u(0, t) = u(L, t) = φx(0, t) = φx(L, t) = 0, ∀t > 0,

(u(x, 0), φ(x, 0)) = (u0(x), φ0(x)), in (0, L),
(ut(x, 0), φt(x, 0)) = (u1(x), φ1(x)), in (0, L).

(1.7)

He proved that the system (1.7) is not exponentially stable and he not show any type of decay rate. In [9]
A. Magaña and R. Quintanilla considered the system:



Download English Version:

https://daneshyari.com/en/article/4614064

Download Persian Version:

https://daneshyari.com/article/4614064

Daneshyari.com

https://daneshyari.com/en/article/4614064
https://daneshyari.com/article/4614064
https://daneshyari.com

