

Asymptotically autonomous multivalued Cauchy problems with spatially variable exponents

Peter E. Kloeden ${ }^{\text {a }}$, Jacson Simsen ${ }^{\text {b,c,* }}$, Mariza Stefanello Simsen ${ }^{\text {b,c }}$
${ }^{a}$ School of Mathematics and Statistics, Huazhong University of Science \& Technology, Wuhan 430074, China
${ }^{\text {b }}$ Instituto de Matemática e Computação, Universidade Federal de Itajubá, Av. BPS n. 1303, Bairro
Pinheirinho, 37500-903, Itajubá, MG, Brazil
c Fakultät für Mathematik, Universität of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany

A R T I C L E I N F O

Article history:

Received 28 October 2015
Available online 10 August 2016
Submitted by M. Quincampoix

Keywords:

Multivalued Cauchy problem
Variable exponents
Pullback attractors
Time-dependent operator
Asymptotically autonomous inclusion

A B S T R A C T

We study the asymptotic behavior of a non-autonomous multivalued Cauchy problem of the form

$$
\frac{\partial u}{\partial t}(t)-\operatorname{div}\left(D(t)|\nabla u(t)|^{p(x)-2} \nabla u(t)\right)+|u(t)|^{p(x)-2} u(t)+F(t, u(t)) \ni 0
$$

on a bounded smooth domain Ω in $\mathbb{R}^{n}, n \geq 1$ with a homogeneous Neumann boundary condition, where the exponent $p(\cdot) \in C(\bar{\Omega})$ satisfies $p^{-}:=\min p(x)>2$. We prove the existence of a pullback attractor and study the asymptotic upper semicontinuity of the elements of the pullback attractor $\mathfrak{A}=\{\mathcal{A}(t): t \in \mathbb{R}\}$ as $t \rightarrow \infty$ for the non-autonomous evolution inclusion in a Hilbert space H under the assumptions, amongst others, that F is a measurable multifunction and $D \in$ $L^{\infty}([\tau, T] \times \Omega)$ is bounded above and below and is monotonically nonincreasing in time. The global existence of solutions is obtained through results of Papageorgiou and Papalini.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study a multivalued Cauchy problem of the form

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(t)-\operatorname{div}\left(D(t)|\nabla u(t)|^{p(x)-2} \nabla u(t)\right)+|u(t)|^{p(x)-2} u(t)+F(t, u(t)) \ni 0 \tag{1}\\
u(\tau)=u_{0}
\end{array}\right.
$$

[^0]on a bounded smooth domain Ω in $\mathbb{R}^{n}, n \geq 1$ with a homogeneous Neumann boundary condition, where the exponent $p(\cdot) \in C(\bar{\Omega})$ satisfies
$$
p^{+}:=\max _{x \in \bar{\Omega}} p(x) \geq p^{-}:=\min _{x \in \bar{\Omega}} p(x)>2,
$$
and the initial condition is $u(\tau) \in H:=L^{2}(\Omega)$. The terms D and F are assumed to satisfy:
Assumption D. $D:[\tau, T] \times \Omega \rightarrow \mathbb{R}$ is a function in $L^{\infty}([\tau, T] \times \Omega)$ satisfying:
(D1) There are positive constants, β and M such that $0<\beta \leq D(t, x) \leq M$ for almost all $(t, x) \in[\tau, T] \times \Omega$. (D2) $D(t, x) \geq D(s, x)$ for each $x \in \Omega$ and $t \leq s$ in $[\tau, T]$.

Assumption F. $F:[\tau, T] \times H \rightarrow P_{f}(H)$, where

$$
P_{f}(H):=\{A \subset H: A \text { nonempty and closed }\}
$$

is a multifunction satisfying:
(F1) For all $x \in H, t \mapsto F(t, x)$ is measurable, that is, for all $y \in H$, the function

$$
[\tau, T] \ni t \mapsto d(y, F(t, x)):=\inf \left\{\|y-z\|_{H}: z \in F(t, x)\right\} \in \mathbb{R}
$$

is measurable.
(F2) There exists $k \in L^{1}\left([\tau, T], \mathbb{R}^{+}\right)$such that

$$
h(F(t, x), F(t, y)) \leq k(t)\|x-y\|,
$$

a.e. on $[\tau, T]$, for all $x, y \in H$. Here h denotes the Hausdorff metric on $P_{f}(H)$ given by: for $A, B \in P_{f}(H)$,

$$
h(A, B):=\max \{\operatorname{dist}(A, B), \operatorname{dist}(B, A)\},
$$

where $\operatorname{dist}(A, B):=\sup \{d(a, B): a \in A\}, d(a, B):=\inf \left\{\|a-b\|_{H}: b \in B\right\}$ and similarly for $\operatorname{dist}(B, A)$. (F3) There exist $a, c \in L^{2}\left([\tau, T], \mathbb{R}^{+}\right)$:

$$
\|F(t, x)\|:=\sup \left\{\|z\|_{H}: z \in F(t, x)\right\} \leq a(t)+c(t)\|x\|_{H},
$$

a.e. in $[\tau, T]$, for all $x \in H$.

In [9] the authors proved the existence of a pullback attractor for the following non-autonomous evolution equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}(t)-\operatorname{div}\left(D(t)|\nabla u(t)|^{p(x)-2} \nabla u(t)\right)+|u(t)|^{p(x)-2} u(t)=B(t, u(t)) \tag{2}
\end{equation*}
$$

on a bounded smooth domain Ω in \mathbb{R}^{n}, B was globally Lipschitz in its second variable and D was assumed to satisfy Assumption D above. Moreover, they proved upper semicontinuity of pullback attractors when the diffusion parameters vary. A similar problem was studied in [15] for a constant exponent p and stronger conditions on the diffusion coefficients D. In [10], the authors considered $B(t, u(t)) \equiv B(u)$ in the problem (2) and proved that it is asymptotically autonomous.

The paper is organized as follows. In Section 2 we prove existence of solution for inclusion (1) following Papageorgiou and Papalini [13]. In Section 3 we provide estimates on the solutions. In Section 4 we establish the existence of a pullback attractor. In Section 5 we prove the asymptotic upper semicontinuity of the elements of the pullback attractor, i.e., we prove that the inclusion (1) is, in fact, asymptotically autonomous when F does not depend explicitly on t.

https://daneshyari.com/en/article/4614065

Download Persian Version:

https://daneshyari.com/article/4614065

Daneshyari.com

[^0]: * Corresponding author at: Instituto de Matemática e Computação, Universidade Federal de Itajubá, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá, MG, Brazil.

 E-mail addresses: kloeden@math.uni-frankfurt.de (P.E. Kloeden), jacson@unifei.edu.br (J. Simsen), mariza@unifei.edu.br (M. Stefanello Simsen).

