Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Asymptotically autonomous multivalued Cauchy problems with spatially variable exponents

Peter E. Kloeden^a, Jacson Simsen^{b,c,*}, Mariza Stefanello Simsen^{b,c}

 ^a School of Mathematics and Statistics, Huazhong University of Science & Technology, Wuhan 430074, China
^b Instituto de Matemática e Computação, Universidade Federal de Itajubá, Av. BPS n. 1303, Bairro

Pinheirinho, 37500-903, Itajubá, MG, Brazil

 $^{\rm c}$ Fakultät für Mathematik, Universität of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany

A R T I C L E I N F O

Article history: Received 28 October 2015 Available online 10 August 2016 Submitted by M. Quincampoix

Keywords: Multivalued Cauchy problem Variable exponents Pullback attractors Time-dependent operator Asymptotically autonomous inclusion

ABSTRACT

We study the asymptotic behavior of a non-autonomous multivalued Cauchy problem of the form

$$\frac{\partial u}{\partial t}(t) - \operatorname{div}(D(t)|\nabla u(t)|^{p(x)-2}\nabla u(t)) + |u(t)|^{p(x)-2}u(t) + F(t,u(t)) \ni 0$$

on a bounded smooth domain Ω in \mathbb{R}^n , $n \geq 1$ with a homogeneous Neumann boundary condition, where the exponent $p(\cdot) \in C(\overline{\Omega})$ satisfies $p^- := \min p(x) > 2$. We prove the existence of a pullback attractor and study the asymptotic upper semicontinuity of the elements of the pullback attractor $\mathfrak{A} = \{\mathcal{A}(t) : t \in \mathbb{R}\}$ as $t \to \infty$ for the non-autonomous evolution inclusion in a Hilbert space H under the assumptions, amongst others, that F is a measurable multifunction and $D \in L^{\infty}([\tau, T] \times \Omega)$ is bounded above and below and is monotonically nonincreasing in time. The global existence of solutions is obtained through results of Papageorgiou and Papalini.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study a multivalued Cauchy problem of the form

$$\begin{cases} \frac{\partial u}{\partial t}(t) - \operatorname{div}(D(t)|\nabla u(t)|^{p(x)-2}\nabla u(t)) + |u(t)|^{p(x)-2}u(t) + F(t,u(t)) \ni 0\\ u(\tau) = u_0 \end{cases}$$
(1)

^{*} Corresponding author at: Instituto de Matemática e Computação, Universidade Federal de Itajubá, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá, MG, Brazil.

E-mail addresses: kloeden@math.uni-frankfurt.de (P.E. Kloeden), jacson@unifei.edu.br (J. Simsen), mariza@unifei.edu.br (M. Stefanello Simsen).

on a bounded smooth domain Ω in \mathbb{R}^n , $n \ge 1$ with a homogeneous Neumann boundary condition, where the exponent $p(\cdot) \in C(\overline{\Omega})$ satisfies

$$p^+ := \max_{x \in \overline{\Omega}} p(x) \ge p^- := \min_{x \in \overline{\Omega}} p(x) > 2,$$

and the initial condition is $u(\tau) \in H := L^2(\Omega)$. The terms D and F are assumed to satisfy:

Assumption D. $D: [\tau, T] \times \Omega \to \mathbb{R}$ is a function in $L^{\infty}([\tau, T] \times \Omega)$ satisfying: (D1) There are positive constants, β and M such that $0 < \beta \leq D(t, x) \leq M$ for almost all $(t, x) \in [\tau, T] \times \Omega$. (D2) $D(t, x) \geq D(s, x)$ for each $x \in \Omega$ and $t \leq s$ in $[\tau, T]$.

Assumption F. $F: [\tau, T] \times H \to P_f(H)$, where

 $P_f(H) := \{ A \subset H : A \text{ nonempty and closed} \}$

is a multifunction satisfying:

(F1) For all $x \in H$, $t \mapsto F(t, x)$ is measurable, that is, for all $y \in H$, the function

$$[\tau, T] \ni t \mapsto d(y, F(t, x)) := \inf\{\|y - z\|_H : z \in F(t, x)\} \in \mathbb{R}$$

is measurable.

(F2) There exists $k \in L^1([\tau, T], \mathbb{R}^+)$ such that

$$h(F(t,x), F(t,y)) \le k(t) ||x-y||,$$

a.e. on $[\tau, T]$, for all $x, y \in H$. Here h denotes the Hausdorff metric on $P_f(H)$ given by: for $A, B \in P_f(H)$,

$$h(A,B) := \max\{\operatorname{dist}(A,B),\operatorname{dist}(B,A)\},\$$

where dist $(A, B) := \sup\{d(a, B) : a \in A\}$, $d(a, B) := \inf\{||a - b||_H : b \in B\}$ and similarly for dist(B, A). (F3) There exist $a, c \in L^2([\tau, T], \mathbb{R}^+)$:

$$||F(t,x)|| := \sup\{||z||_H : z \in F(t,x)\} \le a(t) + c(t)||x||_H,$$

a.e. in $[\tau, T]$, for all $x \in H$.

In [9] the authors proved the existence of a pullback attractor for the following non-autonomous evolution equation

$$\frac{\partial u}{\partial t}(t) - \operatorname{div}(D(t)|\nabla u(t)|^{p(x)-2}\nabla u(t)) + |u(t)|^{p(x)-2}u(t) = B(t,u(t))$$
(2)

on a bounded smooth domain Ω in \mathbb{R}^n , B was globally Lipschitz in its second variable and D was assumed to satisfy **Assumption D** above. Moreover, they proved upper semicontinuity of pullback attractors when the diffusion parameters vary. A similar problem was studied in [15] for a constant exponent p and stronger conditions on the diffusion coefficients D. In [10], the authors considered $B(t, u(t)) \equiv B(u)$ in the problem (2) and proved that it is asymptotically autonomous.

The paper is organized as follows. In Section 2 we prove existence of solution for inclusion (1) following Papageorgiou and Papalini [13]. In Section 3 we provide estimates on the solutions. In Section 4 we establish the existence of a pullback attractor. In Section 5 we prove the asymptotic upper semicontinuity of the elements of the pullback attractor, i.e., we prove that the inclusion (1) is, in fact, asymptotically autonomous when F does not depend explicitly on t. Download English Version:

https://daneshyari.com/en/article/4614065

Download Persian Version:

https://daneshyari.com/article/4614065

Daneshyari.com