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Classical results from spectral theory of stationary linear kinetic equations are 
applied to efficiently approximate two physically relevant weakly nonlinear kinetic 
models: a model of chemotaxis involving a biased velocity-redistribution integral 
term, and a Vlasov–Fokker–Planck (VFP) system. Both are coupled to an 
attractive elliptic equation producing corresponding mean-field potentials. Spectral 
decompositions of stationary kinetic distributions are recalled, based on a variation 
of Case’s elementary solutions (for the first model) and on a Sturm–Liouville 
eigenvalue problem (for the second one). Well-balanced Godunov schemes with 
strong stability properties are deduced. Moreover, in the stiff hydrodynamical 
scaling, an hybridized algorithm is set up, for which asymptotic-preserving 
properties can be established under mild restrictions on the computational grid. 
Several numerical validations are displayed, including the consistency of the VFP 
model with Burgers–Hopf dynamics on the velocity field after blowup of the 
macroscopic density into Dirac masses.
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1. Introduction and theoretical setup

This paper is devoted to the numerical discretization of kinetic systems at hydrodynamic scaling in 
the strongly attractive setting. We are mainly interested in two systems, one modeling chemotaxis, and the 
Vlasov–Poisson Fokker–Planck (VPFP) system in plasma physics. Our aim is to propose accurate numerical 
schemes able to cope with hydrodynamic limit i.e. consistent with the limiting macroscopic model for which 
solutions may blowup into Dirac deltas in finite time.

1.1. Presentation of the two main kinetic models

The present paper, a followup of [36,32], is devoted to the following two models:
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• a first one describing the motion by chemotaxis, proposed in e.g. [41,17,26]:

∂tf + v∂xf = 1
ε

(h(v∂xS)ρ− f(t, x, v)) , 0 ≤ h ≤ 1,
1∫

−1

h(v∂xS)dv = 1, (1)

−∂xxS + S = ρ :=
1∫

−1

f(t, x, v′)dv′. (2)

In this model, the distribution function f governs the dynamics of bacteria or cells moving by chemotaxis, 
i.e. responding to a gradient of a chemical S generating by cells themselves. In this equation x ∈ R, 
v ∈ [−1, 1] and t > 0. In order to guarantee the condition on h, we may assume

h(u) = 1
2 + h1(u), with h1(−u) = −h1(u), −1

2 ≤ h1(·) ≤
1
2 . (3)

When taxis dominates the unbiased movements of cells, ε � 1, so the dynamics is strongly aggregative. 
Then, the first moments in v of the solution to the mesoscopic model can be approximated by a simplified 
macroscopic equation, of aggregation type [21,35]. Indeed, taking the two first moments of (1), we have

∂tρ + ∂xJ = 0, ε(∂tJ + ∂xq) = a(∂xS)ρ− J, (4)

where it was set

J =
1∫

−1

vf(v)dv, q =
1∫

−1

v2f(v)dv, a(u) =
1∫

−1

vh(vu)dv =
1∫

−1

vh1(vu)dx, (5)

and (3) was used to produce the last equality. We deduce easily (at least formally) from (4), that at the 
limit ε → 0, an aggregation equation emerges,

∂tρ + ∂x(a(∂xS)ρ) = 0, −∂xxS + S = ρ. (6)

• A second model of interest in this work is the Vlasov–Poisson–Fokker–Planck (VPFP) system. It governs 
the dynamics of the distribution function f of charge carriers within an electric field E = ∂xφ generated 
by the charge carriers themselves. The system reads [40]:

ε(∂tf + v∂xf) + ∂xφ · ∂vf = 1
θ
∂v(vf + κ∂vf), (7)

−∂xxφ = ρ :=
∫
R

f(v)dv. (8)

The high field regime corresponds to letting ε → 0. As above, we take the two first moments of (7),

∂tρ + ∂xJ = 0, εθ(∂tJ + ∂xq) = θ∂xφρ− J, (9)

where we set J =
∫
R
vf(v)dv, and q =

∫
R
v2f(v)dv. We deduce easily at least formally from (9), that at 

the limit ε → 0 we recover the aggregation equation

∂tρ + θ∂x(∂xφρ) = 0, −∂xxφ = ρ. (10)
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