Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Lipschitz-type conditions on homogeneous Banach spaces of analytic functions

霐

Oscar Blasco^{a,*,1}, Georgios Stylogiannis^b

^a Departamento de Análisis Matemático, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
 ^b Department of Mathematics, University of Thessaloniki, Thessaloniki 54124, Greece

ARTICLE INFO

Article history: Received 25 January 2016 Available online 9 August 2016 Submitted by R. Timoney

Keywords: Banach spaces Lipschitz-type conditions Approximation by partial sums ABSTRACT

In this paper we deal with Banach spaces of analytic functions X defined on the unit disk satisfying that $R_t f \in X$ for any t > 0 and $f \in X$, where $R_t f(z) = f(e^{it}z)$. We study the space of functions in X such that $||P_r(Df)||_X = O(\frac{\omega(1-r)}{1-r}), r \to 1^-$ where $Df(z) = \sum_{n=0}^{\infty} (n+1)a_nz^n$ and ω is a continuous and non-decreasing weight satisfying certain mild assumptions. The space under consideration is shown to coincide with the subspace of functions in X satisfying any of the following conditions: (a) $||R_t f - f||_X = O(\omega(t)),$ (b) $||P_r f - f||_X = O(\omega(1-r)),$ (c) $||\Delta_n f||_X = O(\omega(2^{-n})),$ or (d) $||f - s_n f||_X = O(\omega(n^{-1})),$ where $P_r f(z) = f(rz), s_n f(z) = \sum_{k=0}^{n} a_k z^k$ and $\Delta_n f = s_{2^n} f - s_{2^{n-1}} f$. Our results extend those known for Hardy or Bergman spaces and power weights $\omega(t) = t^{\alpha}$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathcal{H}(\mathbb{D})$ be the Fréchet space of all analytic functions in the unit disk \mathbb{D} endowed with the topology of uniform convergence on compact subsets of \mathbb{D} . For $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $0 \le r < 1$ we write $P_r f$ and $R_t f$ for the dilation and rotation operators, i.e. for $0 \le r < 1$ and $t \in \mathbb{R}$

$$P_r f(z) = f(rz)$$
 and $R_t f(z) = f(e^{it}z)$.

As usual, we use the notation $s_n f = \sum_{k=0}^n a_k z^k$, $\Delta_n f = s_{2^n} f - s_{2^{n-1}} f$ and $\sigma_n f = \sum_{k=0}^n (1 - \frac{k}{n+1}) a_k z^k$ for each $f \in \mathcal{H}(\mathbb{D})$.

^{*} Corresponding author.

E-mail addresses: oblasco@uv.es (O. Blasco), stylog@math.auth.gr, g.stylog@gmail.com (G. Stylogiannis).

 $^{^1\,}$ The first author was supported by the Spanish Project MTM2014-53009-P.

http://dx.doi.org/10.1016/j.jmaa.2016.08.003 0022-247X/© 2016 Elsevier Inc. All rights reserved.

A Banach space X is said to be a Banach space of analytic functions (called \mathcal{H} -admissible in [3]) if

$$A(\mathbb{D}) \subset X \subset \mathcal{H}(\mathbb{D}),$$

with continuous inclusions, where $A(\mathbb{D})$ stands for the disk algebra.

We shall write \mathcal{P} for the subspace of polynomials and we shall denote by $X_{\mathcal{P}}$ the closure of \mathcal{P} under the norm in X, i.e. $\overline{\mathcal{P}} = X_{\mathcal{P}}$ or equivalently $\overline{A(\mathbb{D})} = X_{\mathcal{P}}$. Of course $X_{\mathcal{P}}$ is also a Banach space of analytic functions and

$$X_{\mathcal{P}} \subseteq \{ f \in X : \lim_{t \to 0^+} ||R_t f - f||_X = 0 \}.$$
(1.1)

A Banach space of analytic functions X is said to be *homogeneous* (see [3, Definition 4.1]) whenever X also satisfies the following properties

$$f \in X \Longrightarrow R_t f \in X$$
 and $||R_t f||_X = ||f||_X$ for every $t \in [0, 2\pi)$, (1.2)

$$f \in X \Longrightarrow P_r f \in X \text{ and } ||P_r f||_X \le K ||f||_X \text{ for every } 0 \le r < 1,$$
(1.3)

for some absolute constant $K \geq 1$.

Most of the classical spaces such as Hardy spaces H^p , Bergman spaces A^p , BMOA, the Bloch space \mathcal{B} and many others are homogeneous spaces of analytic functions (see [6], [8] or [15]).

A basic fact holding for homogeneous spaces to be used in the sequel is that for each $f \in X$ the map $w \to f_w$, where $f_w(z) = f(wz)$ for $w \in \overline{\mathbb{D}}$ defines an $X_{\mathcal{P}}$ -valued analytic function i.e. $F(w) = f_w \in \mathcal{H}(\mathbb{D}, X_{\mathcal{P}})$. In particular

$$M_X(r, f) := \sup_{|w|=r} ||f_w||_X$$

is an increasing function of r and $M_X(r, f) = ||P_r f||_X$.

Moreover the function F belongs to $A(\mathbb{D}, X_{\mathcal{P}})$, the space of all vector-valued bounded holomorphic functions $F : \mathbb{D} \to X_{\mathcal{P}}$ with continuous extension to the boundary equipped with the norm

$$||F||_{A(\mathbb{D},X_{\mathcal{P}})} = \sup_{|w| \le 1} ||F(w)||_X = \sup_{|\zeta|=1} ||F(\zeta)||_X = ||f||_X.$$

Of course if X is a homogeneous Banach space of analytic functions, so it is $X_{\mathcal{P}}$. Actually, for homogeneous Banach spaces of analytic functions, (1.3) together with the fact that $P_r f \in A(\mathbb{D})$ for each $0 \leq r < 1$ and polynomials are dense in $A(\mathbb{D})$ allow us to characterize $X_{\mathcal{P}}$ as

$$X_{\mathcal{P}} = \{ f \in X : \lim_{r \to 1^{-}} ||P_r f - f||_X = 0 \}.$$
 (1.4)

The study of the subspace of $X_{\mathcal{P}}$ with a fixed rate of convergence to zero in (1.1) goes back to the work of Hardy and Littlewood in the twenties for the case $X = H^p$. Their fundamental contribution, proved in a series of papers ([9,10] and [11]), can be condensed in the following result.

Theorem (H-L). Let $1 \le p < \infty$, $0 < \alpha \le 1$ and $f \in H^p$. Then the following statements are equivalent:

(a) $||R_t f - f||_{H^p} = O(t^{\alpha}), t \to 0^+,$ (b) $M_{H^p}(r, f') = O((1-r)^{\alpha-1}), r \to 1^-.$ Download English Version:

https://daneshyari.com/en/article/4614070

Download Persian Version:

https://daneshyari.com/article/4614070

Daneshyari.com