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This work deals with the direct and inverse spectral analysis for a class of infinite 
band symmetric matrices. This class corresponds to operators arising from difference 
equations with usual and inner boundary conditions. We give a characterization 
of the spectral functions for the operators and provide necessary and sufficient 
conditions for a matrix-valued function to be a spectral function of the operators. 
Additionally, we give an algorithm for recovering the matrix from the spectral 
function. The approach to the inverse problem is based on the rational interpolation 
theory.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, the direct and inverse spectral analysis of a class of infinite real symmetric band matrices, 
denoted M(n, ∞), is carried out with emphasis in the inverse problems of characterization and reconstruc-
tion. The matrices under consideration, defined in the paragraphs below, arise from difference equations 
with initial and left endpoint boundary conditions together with the so called inner boundary conditions. 
Inner boundary conditions are given by degenerations of the diagonals (see the paragraphs above Defini-
tion 1 and equation (2.4)). Each matrix in M(n, ∞) generates uniquely a closed symmetric operator for 
which we give a spectral characterization. More specifically, we provide necessary and sufficient conditions 
for a matrix-valued function to be a spectral function of the operators stemming from our class of matri-
ces (see Definition 5 and Theorems 5.1 and 5.2). As a byproduct of the spectral analysis of the operators 
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corresponding to matrices in M(n, ∞), we find an if-and-only-if criterion for degeneration in terms of the 
properties of polynomials in an L2 space (see Theorem 3.1).

Although the inverse spectral problems for Jacobi matrices have been studied extensively (see for instance 
[7–9,14,19,22–24,34–36] for the finite case and [10,11,13,14,20,21,37,38] for the infinite case), works dealing 
with band matrices, not necessarily tridiagonal, are not so abundant (see [5,17,18,27–29,32,41,42] for the 
finite case and [3,16] for the infinite case).

Let H be an infinite dimensional separable Hilbert space and fix an orthonormal basis {δk}∞k=1 in it. We 
study the symmetric operator A whose matrix representation with respect to {δk}∞k=1 is a real symmetric 
band matrix which is denoted by A (see [2, Sec. 47] for the definition of the matrix representation of an 
unbounded symmetric operator).

We assume that the matrix A has 2n +1 band diagonals (n ∈ N), that is, 2n +1 diagonals not necessarily 
zero. The band diagonals satisfy the following conditions. The band diagonal farthest from the main one, 
which is given by the diagonal matrix diag{d(n)

k }∞k=1, denoted by Dn, is such that, for some m1 ∈ N, all the 

numbers d(n)
1 , . . . , d(n)

m1−1 are positive and d(n)
k = 0 for all k ≥ m1 with

m1 > 1 . (1.1)

It may happen that all the elements of the sequence {d(n)
k }k∈N are positive which we convene to mean that 

m1 = ∞.
Now, if m1 < ∞, then the elements {d(n−1)

m1+k}∞k=1 of the diagonal next to the farthest, Dn−1, behave in 
the same way as the elements of Dn, that is, there is m2, satisfying

m1 < m2 , (1.2)

such that d(n−1)
m1+1, . . . , d

(n−1)
m2−1 > 0 and d(n−1)

k = 0 for all k ≥ m2. Here, it is also possible that m2 = ∞ in 

which case d(n−1)
k > 0 for all k > m1.

We continue applying the same rule as long as m1, . . . , mj are finite. Thus, if mj < ∞, there is mj+1, 
satisfying

mj < mj+1 , (1.3)

such that d(n−j)
mj+1, . . . , d

(n−j)
mj+1−1 > 0 (here we assume that mj + 1 < mj+1) and d(n−j)

k = 0 for all k ≥ mj+1. 
If mj = ∞, then d(n−j)

k > 0 for all k > mj . Eventually, there is j0 ≤ n − 1 such that mj0+1 = ∞. We allow 
j0 to be zero, which accordingly means that m1 = ∞.

If j0 ≥ 1, as long as j < j0, we say that the diagonal corresponding to Dn−j undergoes degeneration at 
mj+1. Note that the diagonal corresponding to Dn−j0 does not degenerate. Also, j0 defines the number of 
degenerations that the matrix A has.

Definition 1. For a natural number n, the set of matrices satisfying the above properties is denoted by 
M(n, ∞). The set of numbers {mj}j0j=1 characterizes the degenerations of the diagonals. For a matrix 
without degenerations, this set is empty.

A matrix in M(n, ∞) has the particular structure illustrated in Fig. 1. Due to transformations similar 
to the one given in [39, Lem. 1.6], this class of matrices is wider than it seems. We shall see in Section 2
that the rows where there are degenerations and the ones where there are not (cf. (2.12) and (2.10)) give 
rise to difference equations playing different roles in the spectral analysis of the operator corresponding to 
the matrix. This is so even when all entries denoted by gray squares are zero.
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