
The Journal of Systems and Software 84 (2011) 328–339

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

User requirements modeling and analysis of software-intensive systems

Michel dos Santos Soaresa,∗, Jos Vranckenb, Alexander Verbraeckb

a Universidade Federal de Uberlândia, P.O. Box 593, 38400-902 Uberlândia, Brazil
b Delft University of Technology, P.O. Box 5015, NL 2600 GA, Delft, The Netherlands

a r t i c l e i n f o

Article history:
Received 20 July 2010
Received in revised form 7 October 2010
Accepted 14 October 2010
Available online 26 October 2010

Keywords:
Requirements
UML
SysML
Software-intensive systems

a b s t r a c t

The increasing complexity of software systems makes Requirements Engineering activities both more
important and more difficult. This article is about user requirements development, mainly the activities
of documenting and analyzing user requirements for software-intensive systems. These are modeling
activities that are useful for further Requirements Engineering activities. Current techniques for require-
ments modeling present a number of problems and limitations. Based on these shortcomings, a list of
requirements for requirements modeling languages is proposed. The proposal of this article is to show
how some extensions to SysML diagrams and tables can fulfill most of these requirements. The approach
is illustrated by a list of user requirements for a Road Traffic Management System.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Software-intensive systems (Wirsing et al., 2008; Tiako, 2008;
Hinchey et al., 2008) are large, complex systems in which soft-
ware is an essential component, interacting with other software,
systems, devices, actuators, sensors and with people. Being an
essential component, software influences the design, construction,
deployment, and evolution of the system as a whole (ANSI/IEEE,
2000). These systems are in widespread use and their impact
on society is increasing. Developments in engineering software-
intensive systems have a large influence on the gains in productivity
and prosperity that society has seen in recent years (Dedrick et al.,
2003). Their complexity is increased due to the large number of ele-
ments and reliability factors. Thus, they must be decomposed into
several smaller components in order to manage complexity and
facilitate their implementation and verification. In addition, there is
a need to increase the level of abstraction, hiding whenever possible
unnecessary complexity, by the intense use of models. Examples of
software-intensive systems can be found in many sectors, such as
manufacturing plants, transportation, military, telecommunication
and health care.

More specifically, the type of software-intensive systems that
are investigated in this article are the Distributed Real-Time Sys-
tems. The term Real-Time System usually refers to systems with
explicit timing constraints (Gomaa, 2000; Laplante, 2004). Dijkstra
(2002) recognized that some applications are concurrent in nature.

∗ Corresponding author.
E-mail addresses: michel@facom.ufu.br, mics.soares@gmail.com (M.d.S. Soares).

In concurrent problems, there is no way of predicting which sys-
tem component will provide the next input, which increases design
complexity. Moreover, system components, such as sensors and
actuators, are often geographically distributed in a network and
need to communicate according to specific timing constraints
described in requirements documents.

Requirements for software are a collection of needs expressed
by stakeholders respecting some constraints under which the soft-
ware must operate (Pressman, 2009; Robertson and Robertson,
2006). Requirements can be classified in many ways. The first
classification used in this article is related to the level of detail
(the second classification is presented in Section 7.1). In this case,
the two classes of requirements are user requirements and sys-
tem requirements (Sommerville, 2010). User requirements are
high-level abstract requirements based on end users’ and other
stakeholders’ viewpoint. They are usually written using natural lan-
guage, occasionally with the help of domain specific models such
as mathematical equations, or even informal models not related to
any method or language (Luisa et al., 2004). The fundamental pur-
pose of user requirements specification is to document the needs
and constraints gathered in order to later develop software based
on those requirements.

Systems requirements are derived from user requirements but
with a detailed description of what the system should do, and
are usually modeled using formal or semi-formal methods and
languages. This proposed classification allows the representation
of different views for different stakeholders. This is good Soft-
ware Engineering practice, as requirements should be written from
different viewpoints because different stakeholders use them for
various purposes.

0164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2010.10.020

dx.doi.org/10.1016/j.jss.2010.10.020
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:michel@facom.ufu.br
mailto:mics.soares@gmail.com
dx.doi.org/10.1016/j.jss.2010.10.020


M.d.S. Soares et al. / The Journal of Systems and Software 84 (2011) 328–339 329

The process by which requirements for systems and soft-
ware products are gathered, analyzed, documented and managed
throughout the development life cycle is called Requirements
Engineering (Sommerville, 2010). Requirements Engineering is a
very influential phase in the life cycle. According to the SWEBOK
(Abran et al., 2004), it concerns Software Design, Software Test-
ing, Software Maintenance, Software Configuration Management,
Software Engineering Management, Software Engineering Process,
and Software Quality Knowledge Areas. Requirements Engineer-
ing is generally considered in the literature as the most critical
phase within the development of software (Juristo et al., 2002;
Komi-Sirviö et al., 2003; Damian et al., 2004; Minor and Armarego,
2005). Dealing with ever-changing requirements is considered the
real problem of Software Engineering (Berry, 2004). Already in
1973, Boehm suggested that errors in requirements could be up
to 100 times more expensive to fix than errors introduced dur-
ing implementation (Boehm, 1973). According to Brooks (1987),
knowing what to build, which includes requirements elicitation
and technical specification, is the most difficult phase in the design
of software. Lutz (1993) showed that 60% of errors in critical sys-
tems were the results of requirements errors. Studies conducted
by the Standish Group (TSG, 2003) and other researchers (van
Genuchten, 1991; Hofmann et al., 2001) found that the main factors
for problems with software projects (cost overruns, delays, user
dissatisfaction) are related to requirements issues, such as lack of
user input, incomplete requirements specifications, uncontrolled
requirements changing, and unclear objectives. In an empirical
study with 12 companies (Hall et al., 2002), it was discovered that,
out of a total of 268 development problems cited, 48% (128) were
requirements problems.

Requirements Engineering can be divided into two main groups
of activities (Parviainen et al., 2004): (i) requirements develop-
ment, including activities such as eliciting, documenting, analyzing,
and validating requirements, and (ii) requirements management,
including activities related to maintenance, such as tracing and
change management of requirements. This article is about user
requirements development, mainly the activities of documenting
and analyzing user requirements for software-intensive systems.
These are modeling activities that are useful for further Require-
ments Engineering activities. The assumption in this article is that
improving requirements modeling may have a strong impact on
the quality of later requirements activities, such as requirements
tracing, and in the design phase.

1.1. Research question

The main research question to be answered in this article is given
as follows:

How to improve user requirements modeling and analysis for
software-intensive systems?

This question is mainly answered through the early introduc-
tion of graphical models, which are used to document and analyze
requirements. The identification and graphical representation of
requirements relationships facilitate that traces are made. This
helps in uncovering the impact that changes in requirements have
in the system design. Requirements are important to determine the
architecture. When designing the architecture, at least part of the
functional requirements should be known. In addition, the non-
functional requirements that the architecture has to conform with
should be made explicit.

1.2. Article outline

Initially, a subset of a list of user requirements for a Road
Traffic Management System (RTMS) is presented, using natural lan-
guage, to be further modeled and analyzed (Section 2). Current

techniques for requirements modeling are presented in Section
3. A number of problems and limitations related to these tech-
niques are discussed in the same section. These shortcomings led
to a list of requirements for requirements modeling languages in
Section 4 and the proposed approach in Section 5 to fulfill the miss-
ing characteristics of the list. From the conclusion of Section 4,
the starting point for requirements modeling languages is to use
SysML diagrams and tables, which are presented in detail in Sec-
tion 6. Then, SysML’s constructions are extended in Section 7 and
proposed to model the initial list of user requirements (Section
8). The article ends with discussion (Section 9) and conclusions
(Section 10).

2. List of requirements for RTMS

The list of requirements given below is a subset from a document
which contains 79 atomic requirements for RTMS (AVV, 2006).
The document is a technical auditing work based on an extensive
literature study and interviews, in which the stakeholders were
identified. The requirements were gathered through interviews
with multiple stakeholders.

The stakeholders (and the related number of requirements)
were classified as: the Road Users (1), the Ministry of Transport,
Public Works and Water Management (2), the Traffic Managers
(10), the Traffic Management Center (8), the Task, Scenario and
Operator Manager (22), the Operators (4), the Designers of the
Operator’s Supporting Functions (15), and the Technical Quality
Managers (17). In this article the requirements of the Traffic Man-
ager were selected as example to be modeled using SysML diagrams
and constructions in Section 8. The requirements are given as fol-
lows.

Traffic Manager:

• TM4—It is expected that software systems will be increasingly
more intelligent for managing the traffic-flow in a more effective
and efficient manner.

• TM5—To optimize traffic flow, it is expected that gradually,
region-wide traffic management methods will be introduced.

• TM6—The traffic management systems must have a conve-
nient access to region-wide, nation-wide, or even European-wide
parameters so that the traffic-flow can be managed optimally.

• TM7—It must be possible for the Traffic Managers/experts to
express (strategic) “task and scenario management frames”, con-
veniently.

• TM8—The system should effectively gather and interpret all kinds
of information for the purpose of conveniently assessing the per-
formance of the responsible companies/organizations that have
carried out the construction of the related traffic systems and/or
infrastructure.

• TM9—The system must support the Traffic Managers/experts so
that they can express various experimental simulations and ana-
lytical models.

• TM10—The system must enable the Traffic Managers/experts to
access various kinds of statistical data.

• TM11—The system must enable the Traffic Managers/experts to
access different kinds of data for transient cases such as incidents.

• TM12—The system must provide means for expressing a wide
range of tasks and scenarios.

• TM13—The traffic management will gradually evolve from object
management towards task and scenario management.

3. Requirements modeling approaches

There are several approaches to modeling requirements. Basi-
cally, these approaches can be classified as graphics-based, purely



Download English Version:

https://daneshyari.com/en/article/461408

Download Persian Version:

https://daneshyari.com/article/461408

Daneshyari.com

https://daneshyari.com/en/article/461408
https://daneshyari.com/article/461408
https://daneshyari.com

