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1. Introduction

A quantum graph is a metric graph equipped with a self-adjoint differential operator (usually of
Schrodinger type) defined on the edges and matching conditions specified at the vertices. Every edge of
the graph has a length assigned to it.

One of the fundamental questions of the spectral theory is that of presence in the spectrum of degenerate
(or repeated) eigenvalues. In particular, it is usually the case that within a rich enough set of problems,
the problems with degenerate eigenvalues form a small subset. In other words, unless a system has symme-
tries (which usually force degeneracy in the spectrum, see, for example, [20]), it is highly unlikely to have
degenerate eigenvalues.

Mathematically, a classical result by Uhlenbeck [18] (see also [19] for a generalization) establishes generic
simplicity of eigenvalues of the Laplace—Beltrami operator on compact manifolds, with respect to the set of
all possible metrics on the manifold. Some generic properties of eigenfunctions are also established. Since
then, various extensions and generalizations of this result have been proven for different circumstances (see,
for example, [14] and references therein).
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On graphs, the question of simplicity of eigenvalues was considered by Friedlander in [13], who proved
that the eigenvalues are generically simple with respect to the perturbation of the edge lengths of the graph.
The proof is based on perturbation theory and applies to graphs with Neumann—Kirchhoff (NK) conditions
only (see Section 2 for the definitions). When this article was in preparation, an outline of a shorter proof,
under the same conditions, was released by Colin de Verdiére [11].

In this work we consider a wider range of vertex conditions, namely the J-type conditions on vertices of
the graph. Furthermore, we also investigate the eigenfunctions, showing that generically they do not vanish
on vertices, unless this is unavoidable due to presence of looping edges. Both of these results are important in
applications, in particular all recent results on the number of zeros of graph eigenfunctions assume both the
simplicity of eigenvalues and non-vanishing of eigenfunctions on vertices as a precondition (see [6,4,2,1,10]
and references therein).

In the proof, the simplicity of eigenvalues and non-vanishing of eigenfunctions are tightly interconnected;
each property is assisting in the proof of the other (the proof is done by induction). The proof is geometric
in nature and uses local modifications of the graph to reduce it to previously considered case. In Section 6
of the paper we also consider an application of the result to the study of the secular manifold of a graph,
showing that for large classes of graphs, the set of smooth points of the manifold has exactly two connected
components.

We remark that from the general consideration one can deduce the result for generic choices of the vertex
conditions. The challenge is to obtain it for a fixed choice of vertex conditions (and a generic choice of edge
lengths). The existing proofs cannot be readily re-used for this purpose. While the original proof due to
Friedlander [13] is very technical, the simpler proof by Colin de Verdiére [11] relies on the properties of the
so-called “secular manifold” for quantum graphs which does not exist for general d-type conditions. Finally,
we mention a result of Exner and Jex, where the simplicity of the ground state eigenvalue and positivity of
the corresponding eigenfunction was established for graph with non-repulsive d-type conditions [12].

2. Quantum graph Hamiltonian

We start by defining the quantum graph, following the notational conventions of [9]. Let ' = (V, E) be
a connected metric graph with a set of vertices V' = {v;} and edges E = {e;}. Both sets V and E are
assumed to be finite and the edges are of bounded length. We allow multiple edges between a given pair of
vertices and the edges that loop from a vertex to itself (see also Remark 2.1 below).

A function f on T is a collection of functions f,(z) defined on each edge e. Consider the Laplace operator
H defined by

H: f — —@,
acting on the functions that belong to the Sobolev H?(e) space on each edge e and satisfy the J-type
boundary conditions with coefficients «,, at the vertices of the graph,

f(x) is continuous at v

S eer, 2-(0) = au(0)

(2.1)
where for each vertex v, the corresponding vertex condition «,, is a fixed real number. The set E, is the set
of edges joined at the vertex v; by convention, each derivative at a vertex is taken into the corresponding
edge. We will often encounter the special case with a,, = 0, which is known as the Neumann—Kirchhoff
(NK) condition. The special value a,, = oo should be taken to mean the Dirichlet condition f(v) = 0. Such
condition will only be allowed at vertices of degree 1, as it effectively disconnects the edges if imposed at a
vertex of degree 2 or higher. Conditions with a,, # 0, 0o will be called Robin-type.
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