

On a large time behavior of a solution to a one-dimensional free boundary problem for adsorption phenomena

Toyohiko Aiki ${ }^{\text {a,* }}$, Yusuke Murase ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematical and Physical Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681 Japan
b Department of Mathematics, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, 468-8502 Japan

A R T I C L E IN F O

Article history:

Received 12 February 2016
Available online 7 June 2016
Submitted by Y. Yamada
Keywords:
Free boundary problem
Large time behavior Hysteresis

Abstract

In this paper we consider a one-dimensional free boundary problem describing adsorption phenomena in a porous media. This problem was already proposed and we established a local existence in time and a uniqueness result in $[1,4]$. Here, through the discussion for the dynamics of the free boundary in wetting and drying processes we suppose a specific form of the growth rate condition for the free boundary. By using this form in our problem we can obtain the global existence of a solution in time and convergence of the free boundary as $t \rightarrow \infty$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We study a free boundary problem proposed as a mathematical model for a drying and wetting process in a porous media in our previous papers $[1,4]$. In this model we consider the processes in one hole of the media and regard the hole as a one-dimensional interval $[0, L]$, where L is the length of the hole. Also, we suppose that the interval consists of the water-drop (liquid) zone $[0, s(t)$) and the air zone $(s(t), L]$, and denote by u the relative humidity in the air zone, where $t \in[0, T]$ is the time variable and s is a curve with $0<s<T$ on $[0, T]$ for $T>0$ (see Fig. 1). The problem is to find a pair of s and the function u on $Q_{s}(T):=\{(t, x) ; 0<t<T, s(t)<x<L\}$ (see Fig. 2) satisfying

$$
\begin{align*}
& \rho_{g} u_{t}-\kappa u_{x x}=0 \text { in } Q_{s}(T) \tag{1.1}\\
& u(t, L)=b(t) \text { for } 0<t<T \tag{1.2}\\
& \dot{s}(t)\left(:=\frac{d}{d t} s(t)\right)=\alpha(s(t), u(t, s(t))) \text { for } 0<t<T \tag{1.3}
\end{align*}
$$

[^0]

Fig. 1. Image of one hole.

Fig. 2. Domain of the problem.

$$
\begin{align*}
& \kappa u_{x}(t, s(t))=\left(\rho_{a}-\rho_{g} u(t, s(t))\right) \dot{s}(t) \text { for } 0<t<T, \tag{1.4}\\
& s(0)=s_{0} \tag{1.5}\\
& u(x, 0)=u_{0}(x) \text { for } s_{0}<x<L \tag{1.6}
\end{align*}
$$

where ρ_{a} and ρ_{g} are constants of the density of the aqueous $-\mathrm{H}_{2} \mathrm{O}$ and the gaseous- $\mathrm{H}_{2} \mathrm{O}$, respectively, κ is a diffusion constant of the gaseous- $\mathrm{H}_{2} \mathrm{O}$, a continuous function α on \mathbb{R}^{2} indicates the growth rate of the liquid zone, b is a given boundary function on $[0, T]$, and s_{0} and u_{0} are initial data.
In $[1,4]$ under some conditions for α, b, s_{0} and u_{0} we have proved that the above problem (1.1)-(1.6) has a solution $\{s, u\}$ on $\left[0, T_{0}\right]$ for some $0<T_{0} \leq T$ and admits at most one solution.

Our aim of this paper is to show a large time behavior result for the solution of the problem. For the analysis to the large time behavior we need some uniform estimates for solutions with respect to t. In order to get these estimates we assume more conditions for α. For the following physical iterpretaion we refer to $[2,3]$.

First, we suppose that the grow rate α is equals to the difference of the rates r_{1} and r_{2}, that is, $\alpha=r_{1}-r_{2}$, where r_{1} and r_{2} are the rate from moisture in air to water-droplet and from water-droplet to moisture on the free boundary. By collision of moisture to the water droplet or the wall the moisture becomes water-droplet. Then the rate r_{1} is proportionally to the density of the gaseous $-\mathrm{H}_{2} \mathrm{O}$ near the free boundary. This leads to $r_{1}=a u(t, s(t))$, where a is a positive constant. Next, we consider the behavior of the water droplet near the free boundary (see Fig. 1). Let f_{1} and f_{2} be attractive forces between the water droplet and the wall, and between water droplets, respectively. If the sum of the forces f_{1} and f_{2} is weak, then the water droplet becomes moisture, easily. Otherwise, the water droplet stays there. Thus we may suppose that r_{2} is a non-increasing function of $f_{1}+f_{2}$. Moreover, we assume that $r_{2} \rightarrow 0$ as $f_{1}+f_{2} \rightarrow \infty$. Since by elementary physics the force f_{1} is given by the form $f_{1}=c s^{-m}$, where c and m are positive constants and we can regard that f_{2} is a positive constant, we suppose

$$
r_{2}=\frac{a}{c_{1}\left(f_{1}+f_{2}\right)}=\frac{a}{c_{1}\left(c s^{-m}+f_{2}\right)},
$$

https://daneshyari.com/en/article/4614083

Download Persian Version:
https://daneshyari.com/article/4614083

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: aikit@fc.jwu.ac.jp (T. Aiki), ymurase@meijo-u.ac.jp (Y. Murase).

