

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Anticommutation in the presentations of theta-deformed spheres

Benjamin Passer¹

Washington University, St. Louis, MO 63130, United States

ARTICLE INFO

Article history: Received 5 May 2016 Available online 18 August 2016 Submitted by D. Blecher

Keywords:
Borsuk-Ulam
Anticommutation
Noncommutative suspension

ABSTRACT

We consider an analogue of the θ -deformed even spheres, modifying the relations demanded of the self-adjoint generator x in the usual presentation. In this analogue, x is given anticommutation relations with all of the other generators, as opposed to being central. The main result shows that these algebras satisfy a Borsuk–Ulam property that is visible in even K-theory.

© 2016 Published by Elsevier Inc.

1. Introduction

When a Rieffel deformation procedure [14] is applied to the function algebra $C(\mathbb{S}^k)$ of a sphere \mathbb{S}^k , the resulting C^* -algebra admits a succinct presentation [8,9,4].

Definition 1.1. An $n \times n$ matrix ρ is a parameter matrix if ρ has 1 in each diagonal entry, each entry of ρ is unimodular, and $\rho_{jk} = \overline{\rho_{kj}}$ for each j and k. Equivalently, $\rho_{jk} = e^{2\pi i\theta_{jk}}$ for a (nonunique) real, antisymmetric matrix θ .

Definition 1.2. Let ρ be an $n \times n$ parameter matrix. Then $C(\mathbb{S}^{2n-1}_{\rho})$ and $C(\mathbb{S}^{2n}_{\rho})$ are given by the following C^* -presentations.

$$C(\mathbb{S}_{\rho}^{2n-1}) \cong C^*(z_1, \dots, z_n \mid z_j z_j^* = z_j^* z_j, \quad z_k z_j = \rho_{jk} z_j z_k, \quad z_1 z_1^* + \dots + z_n z_n^* = 1)$$

$$C(\mathbb{S}_{\rho}^{2n}) \cong C^*(z_1, \dots, z_n, x \mid z_j z_j^* = z_j^* z_j, \quad x = x^*, \quad z_k z_j = \rho_{jk} z_j z_k, \quad x z_j = z_j x,$$

$$z_1 z_1^* + \dots + z_n z_n^* + x^2 = 1)$$

The presentations and notation illustrate the mentality suggested by the Gelfand–Naimark theorem, in that we view $C(\mathbb{S}_{\rho}^k)$ as a (noncommutative) function algebra with coordinate functions labeled z_j or x.

E-mail address: bpasser@math.wustl.edu.

 $^{^{\}rm 1}$ Partially supported by National Science Foundation Grants DMS 1300280 and DMS 1363250.

The noncommutativity relations of $C(\mathbb{S}^k_{\rho})$ vary continuously as a function of ρ , and $C(\mathbb{S}^{2n}_{\rho})$ is realized as a quotient $C(\mathbb{S}^{2n+1}_{\omega})/\langle z_{n+1}-z_{n+1}^*\rangle$, where ω is such that z_{n+1} is central and ρ is the upper left $n\times n$ submatrix of ω . However, this type of quotient is reasonable (that is, nondegenerate) even when z_{n+1} anticommutes with some of the other z_j . We consider below the quotients $C(\mathbb{S}^{2n+1}_{\omega})/\langle z_{n+1}-z_{n+1}^*\rangle$ when anticommutation always occurs. As such, the presentation of these algebras is identical to that of $C(\mathbb{S}^{2n}_{\rho})$, except anticommutation of x and z_j replaces commutation.

Definition 1.3. Let ρ be an $n \times n$ parameter matrix. Then \mathfrak{R}^{2n}_{ρ} is defined by the following C^* -presentation.

$$\mathfrak{R}_{\rho}^{2n} \cong C^{*}(z_{1}, \dots, z_{n}, x \mid z_{j}z_{j}^{*} = z_{j}^{*}z_{j}, \quad x = x^{*}, \quad z_{k}z_{j} = \rho_{jk}z_{j}z_{k}, \quad xz_{j} = -z_{j}x,$$

$$z_{1}z_{1}^{*} + \dots + z_{n}z_{n}^{*} + x^{2} = 1)$$

$$(1.4)$$

We adopt the convention that \mathfrak{R}^{2n} without a subscript denotes \mathfrak{R}^{2n}_{ρ} for ρ a matrix of all ones. In this algebra, z_1, \ldots, z_n commute with each other and anticommute with x.

Each \mathfrak{R}^{2n}_{ρ} may be realized as a noncommutative unreduced suspension (in the sense of [11], Definition 3.4) of the unital C^* -algebra $C(\mathbb{S}^{2n-1}_{\rho})$ given by the antipodal map, which is the order two homomorphism that negates each generator of the standard presentation. In general, if β generates a \mathbb{Z}_2 action on a unital C^* -algebra A, then

$$\Sigma^{\beta} A := \{ f \in C([0,1], A \rtimes_{\beta} \mathbb{Z}_2) : f(0) \in A, f(1) \in C^*(\mathbb{Z}_2) \}$$

defines the noncommutative unreduced suspension of (A, β, \mathbb{Z}_2) . When β is the trivial action, $\Sigma^{\beta}A$ is isomorphic to the unreduced suspension ΣA ; this was considered in [5] and [11] in pursuit of noncommutative Borsuk–Ulam theory.

Theorem 1.5 (Borsuk–Ulam). No continuous, odd maps exist from \mathbb{S}^k to \mathbb{S}^{k-1} , and every continuous, odd map on \mathbb{S}^{k-1} is homotopically nontrivial.

In this context, a function f is odd if f(-x) = -f(x) for all inputs x. Moreover, a function $f = f_0$ is homotopically trivial if there exists a homotopy f_t connecting f_0 to a constant function f_1 . For example, the identity map on \mathbb{S}^n is homotopically nontrivial, as \mathbb{S}^n is not contractible. Noncommutative Borsuk-Ulam theorems [16,18,2,10,5,11,3] arise when a C^* -algebraic theorem generalizes the result of passing the traditional Borsuk-Ulam theorem, or one of its various restatements and extensions, through Gelfand-Naimark duality. In short, these theorems describe when an equivariant map between two related C^* -algebras cannot exist, or when an equivariant self-map must behave nontrivially with respect to some invariant. The θ -deformed odd spheres were considered for this purpose in [10] with \mathbb{Z}_k rotation actions; the \mathbb{Z}_2 case is repeated below.

Theorem 1.6. Let α denote the antipodal \mathbb{Z}_2 -action on any θ -deformed sphere, which negates each generator of the standard presentation. If ρ and ω are $n \times n$ parameter matrices, then any α -equivariant, unital *-homomorphism from $C(\mathbb{S}^{2n-1}_{\rho})$ to $C(\mathbb{S}^{2n-1}_{\omega})$ must induce a non-constant map on $K_1 \cong \mathbb{Z}$.

Corollary 1.7. Fix $k \in \mathbb{Z}^+$ and parameter matrices γ and δ of the appropriate dimensions so that $C(\mathbb{S}^{k-1}_{\gamma})$ and $C(\mathbb{S}^k_{\delta})$ are defined. Then there are no antipodally equivariant, unital *-homomorphisms from $C(\mathbb{S}^{k-1}_{\gamma})$ to $C(\mathbb{S}^k_{\delta})$.

The K-theory of θ -deformed spheres exactly matches that of the commutative case, as Rieffel deformation preserves K-theory [15], but there are more detailed descriptions [9,12].

Download English Version:

https://daneshyari.com/en/article/4614084

Download Persian Version:

https://daneshyari.com/article/4614084

<u>Daneshyari.com</u>