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Spacelike surfaces in the Lorentz–Minkowski space L3 can be endowed with two 
different Riemannian metrics, the metric inherited from L3 and the one induced 
by the Euclidean metric of R3. It is well known that the only surfaces with zero 
mean curvature with respect to both metrics are open pieces of the helicoid and of 
spacelike planes. We consider the general case of spacelike surfaces with the same 
mean curvature with respect to both metrics. One of our main results states that 
those surfaces have non-positive Gaussian curvature in R3. As an application of 
this result, jointly with a general argument on the existence of elliptic points, we 
present several geometric consequences for the surfaces we are considering. Finally, 
as any spacelike surface in L3 is locally a graph, our surfaces are locally determined 
by the solutions to the HR = HL surface equation. Some uniqueness results for the 
Dirichlet problem associated to this equation are given.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A hypersurface in the Lorentz–Minkowski space Ln+1 is said to be spacelike if its induced metric is a 
Riemannian one. We can endow a spacelike hypersurface in Ln+1 with another Riemannian metric, the one 
inherited from the Euclidean space Rn+1. Therefore, we can consider two different mean curvature functions 
on a spacelike hypersurface, the mean curvature function related to the metric induced by Rn+1, that we 
will denote by HR, and the one related to the metric inherited from Ln+1, HL.

A hypersurface in Rn+1 is said to be minimal if its mean curvature function vanishes identically, that is 
HR ≡ 0. Analogously, a spacelike hypersurface in Ln+1 is said to be maximal if HL ≡ 0. This terminology 
comes from the fact that minimal (maximal) hypersurfaces locally minimize (maximize) area among all 
nearby hypersurfaces sharing the same boundary, see [14].

The study of minimal and maximal hypersurfaces is a topic of wide interest. One of the main results 
about the global geometry of minimal surfaces is the well-known Bernstein theorem, proved by Bernstein [5]
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in 1915, which states that the only entire minimal graphs in R3 are the planes. Some decades later, in 
1970, Calabi [7] proved its analogous version for spacelike surfaces in the Lorentz–Minkowski space, the 
Calabi–Bernstein theorem, which states that the only entire maximal graphs in L3 are the spacelike planes. 
An important difference between both results is that the Bernstein theorem can be extended to minimal 
graphs in Rn+1 up to dimension n = 7, but it is no longer true for bigger dimensions [6]. However, the 
Calabi–Bernstein theorem holds true for any dimension as it was proved by Calabi [7] for dimension n ≤ 4, 
and by Cheng and Yau [8] for arbitrary dimension.

It is interesting to note that any complete spacelike hypersurface in Ln+1 is necessarily an entire graph 
over any spacelike hyperplane, see [3, Proposition 3.3]. Therefore, the Calabi–Bernstein theorem can also 
be expressed in a parametric way by asserting that the only complete maximal hypersurfaces in Ln+1 are 
the spacelike hyperplanes. This parametric version is not true in Rn+1, indeed there exists a wide family of 
examples of non-trivial complete minimal hypersurfaces in Rn+1.

As an immediate consequence of the above results, we conclude that the only complete hypersurfaces 
that are simultaneously minimal in Rn+1 and maximal in Ln+1 are the spacelike hyperplanes.

Going a step further, we can consider spacelike hypersurfaces with the same constant mean curvature 
functions HR and HL. Heinz [12], Chern [9] and Flanders [10] proved that the only entire graphs with 
constant mean curvature HR in Rn+1 are the minimal graphs. There are examples of entire spacelike graphs 
with constant mean curvature HL in Ln+1 which are not maximal, for instance the hyperbolic spaces. 
However, taking into account the Calabi–Bernstein theorem, we conclude again that the only complete 
spacelike hypersurfaces in Ln+1 with the same constant mean curvature functions HR and HL are the 
spacelike hyperplanes.

Without assuming any completeness hypothesis, Kobayashi [13] studied the problem for HR = HL = 0
in the 2-dimensional case. He showed that the only surfaces that are simultaneously minimal and maximal 
are open pieces of a spacelike plane or of a helicoid in the region where the helicoid is spacelike. However, 
nothing is known neither for bigger dimension nor for more general mean curvature functions HR and HL.

Our purpose is to study some local and global geometric properties of the spacelike surfaces in L3 such 
that HR = HL, not necessarily constant. Although we will focus on dimension 2, some results are still true 
in arbitrary dimension.

It is well known that any spacelike surface can be locally seen as a graph over an open domain of a 
spacelike plane, which without loss of generality can be supposed to be the plane x3 = 0, see [14]. That is, 
a spacelike surface is locally defined by a smooth function u. Therefore, the functions HR and HL can be 
written in terms of such a function u and its partial derivatives. In this way, the identity HR = HL becomes 
a quasilinear elliptic partial differential equation, everywhere except at those points at which the Euclidean 
gradient of u vanishes, where the equation is parabolic.

In Section 2 we present some basic preliminaries on spacelike hypersurfaces in Ln+1 and their mean 
curvature functions with respect to the metrics inherited from Rn+1 and Ln+1. In the next section we state 
a result on the existence of an elliptic point in a hypersurface of Rn+1 under some appropriate assumptions, 
and we see that the same result holds for spacelike hypersurfaces in Ln+1. In Section 4 we consider spacelike 
surfaces in L3 such that HR = HL. We prove that for those surfaces KR is always non-positive, and if the 
mean curvature does not vanish at a point, then the surface is locally non-convex at that point, Theorem 4. 
From this theorem, as well as from the result on the existence of an elliptic point, we get some consequences 
to which the rest of the section is devoted. Specifically, we prove the following theorems.

Theorem 5. Let Σ be a compact spacelike surface with (necessarily) non-empty boundary such that HR = HL. 
Then Σ is contained in the convex hull of its boundary.

Theorem 6. The only spacelike graphs Σu in L3 defined over a domain Ω ⊆ R2 of infinite width, with 
HR = HL, and asymptotic to a spacelike plane, are (pieces of) spacelike planes.
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