A note on the relationship between quasi-symmetric mappings and φ-uniform domains

Xiantao Wang ${ }^{\text {a }}$, Qingshan Zhou ${ }^{\text {a }}$, Tiantian Guan ${ }^{\text {b }}$, Manzi Huang ${ }^{\text {b }}$, Antti Rasila ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Mathematics, Shantou University, Shantou, Guangdong 515063, People's Republic of China
b Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
${ }^{\text {c D Department of Mathematics and Systems Analysis, P.O. Box 11100, Aalto University, FI-00076 Aalto, }}$ Finland

A R T I C L E I N F O

Article history:

Received 11 February 2016
Available online 3 August 2016
Submitted by E. Saksman

Keywords:

Distance ratio metric
Quasihyperbolic metric
Uniform domain
φ-uniform domain
Quasi-symmetric mapping

Abstract

The aim of this note is to construct a ψ-uniform domain G in the complex plane \mathbb{C} such that the identity mapping id: $\left(G, j_{G}\right) \rightarrow\left(G, k_{G}\right)$ is not an η-quasi-symmetric mapping for any homeomorphism $\eta:[0, \infty) \rightarrow[0, \infty)$. This result shows that the answer to the related open problem, posed by Hästö, Klén, Sahoo and Vuorinen, is negative.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

For a proper subdomain G of \mathbb{R}^{n} and $z_{1}, z_{2} \in G$, the distance ratio metric j_{G} is defined by

$$
j_{G}\left(z_{1}, z_{2}\right)=\log \left(1+\frac{\left|z_{1}-z_{2}\right|}{\min \left\{\delta_{G}\left(z_{1}\right), \delta_{G}\left(z_{2}\right)\right\}}\right)
$$

where $\delta_{G}\left(z_{1}\right)$ denotes the Euclidean distance from z_{1} to the boundary ∂G of G. We remark that the above form of j_{G}, introduced in [10], is obtained by a slight modification of a metric that was studied in [2,3].

For a rectifiable arc or a path γ in G, its quasihyperbolic length of γ in G is the number:

$$
\ell_{k_{G}}(\gamma)=\int_{\gamma} \frac{|d z|}{\delta_{G}(z)}
$$

[^0]http://dx.doi.org/10.1016/j.jmaa.2016.07.049
0022-247X/© 2016 Elsevier Inc. All rights reserved.

The quasihyperbolic metric $k_{G}\left(z_{1}, z_{2}\right)$ between z_{1} and z_{2} is defined by

$$
k_{G}\left(z_{1}, z_{2}\right)=\inf \left\{\ell_{k_{G}}(\gamma)\right\},
$$

where the infimum is taken over all rectifiable arcs γ joining z_{1} and z_{2} in G. It is well-known that for z_{1} and $z_{2} \in G$, we have $k_{G}\left(z_{1}, z_{2}\right) \geq j_{G}\left(z_{1}, z_{2}\right)$ (cf. [3]).

The class of uniform domains was introduced by Martio and Sarvas in 1979 [6]. The precise definition is as follows.

Definition 1.1. Given $c \geq 1$, a domain G in \mathbb{R}^{n} is called c-uniform provided that each pair of points z_{1}, z_{2} in G can be joined by a rectifiable arc γ in G satisfying
(1) $\min \left\{\ell\left(\gamma\left[z_{1}, z\right]\right), \ell\left(\gamma\left[z_{2}, z\right]\right)\right\} \leq c \delta_{G}(z)$ for all $z \in \gamma$;
(2) $\ell(\gamma) \leq c\left|z_{1}-z_{2}\right|$,
where $\ell(\gamma)$ denotes the length of γ and $\gamma\left[z_{j}, z\right]$ stands for the part of γ between z_{j} and z. An arc γ with the above properties is called a double c-cone arc. A domain is called uniform if it is c-uniform for some constant $c \geq 1$.

The following convenient characterization of uniform domains, by means of the quasihyperbolic and distance ratio metrics, was given by Gehring and Osgood [2]: a proper subdomain G of \mathbb{R}^{n} is uniform if and only if there exists a constant $\mu \geq 1$, depending only on c, such that for all z_{1} and z_{2} in G,

$$
k_{G}\left(z_{1}, z_{2}\right) \leq \mu j_{G}\left(z_{1}, z_{2}\right)
$$

We remark that the above characterization is again slightly different from the one given in [2], as the original result had an additive constant on the right hand side. Later, it was shown by Vuorinen [10] that this constant is not necessary. Motivated by this observation, Vuorinen [10] gave the following more general definition of φ-uniform domains:

Definition 1.2. Let $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a homeomorphism. A domain $G \subset \mathbb{R}^{n}$ is said to be φ-uniform if for all $z_{1}, z_{2} \in G$,

$$
k_{G}\left(z_{1}, z_{2}\right) \leq \varphi\left(\frac{\left|z_{1}-z_{2}\right|}{\min \delta_{G}\left(z_{1}\right), \delta_{G}\left(z_{2}\right)}\right) .
$$

Obviously, uniformity implies φ-uniformity with $\varphi(t)=\mu \log (1+t)$ for $t>0$ with $\mu \geq 1$. It is easy to see that the converse is not true.

Interesting results on the above classes of domains have been obtained by Väisälä [7] (see also [8]). In particular, he observed that the class of φ-uniform domains coincides with the class of uniform domains if φ is a slow function, i.e.,

$$
\lim _{t \rightarrow \infty} \frac{\varphi(t)}{t}=0
$$

Recently, the geometric properties of this class of domains have been investigated in [4]. The stability of φ-uniform domains has been established [5].
Definition 1.3. A homeomorphism $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be η-quasi-symmetric if there is a homeomorphism $\eta:[0, \infty) \rightarrow[0, \infty)$ such that

$$
|x-a| \leq t|x-b| \text { implies }|f(x)-f(a)| \leq \eta(t)|f(x)-f(b)|
$$

for each $t>0$ and for all points x, a and b in \mathbb{R}^{n}.

https://daneshyari.com/en/article/4614099

Download Persian Version:
https://daneshyari.com/article/4614099

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: xtwang@stu.edu.cn (X. Wang), q476308142@qq.com (Q. Zhou), 1548643494@qq.com (T. Guan), mzhuang79@163.com (M. Huang), antti.rasila@iki.fi (A. Rasila).

