Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Note

A note on the relationship between quasi-symmetric mappings and φ -uniform domains

Xiantao Wang^a, Qingshan Zhou^a, Tiantian Guan^b, Manzi Huang^b, Antti Rasila^{c,*}

^a Department of Mathematics, Shantou University, Shantou, Guangdong 515063, People's Republic of China

^b Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, People's Republic of

China^c Department of Mathematics and Systems Analysis, P.O. Box 11100, Aalto University, FI-00076 Aalto. Finland

ARTICLE INFO

Article history: Received 11 February 2016 Available online 3 August 2016 Submitted by E. Saksman

Keywords: Distance ratio metric Quasihyperbolic metric Uniform domain φ -uniform domain Quasi-symmetric mapping

1. Introduction

For a proper subdomain G of \mathbb{R}^n and $z_1, z_2 \in G$, the distance ratio metric j_G is defined by

$$j_G(z_1, z_2) = \log\left(1 + \frac{|z_1 - z_2|}{\min\{\delta_G(z_1), \delta_G(z_2)\}}\right),\,$$

where $\delta_G(z_1)$ denotes the Euclidean distance from z_1 to the boundary ∂G of G. We remark that the above form of j_G , introduced in [10], is obtained by a slight modification of a metric that was studied in [2,3].

For a rectifiable arc or a path γ in G, its quasihyperbolic length of γ in G is the number:

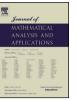
$$\ell_{k_G}(\gamma) = \int\limits_{\gamma} \frac{|dz|}{\delta_G(z)}.$$

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2016.07.049

The aim of this note is to construct a ψ -uniform domain G in the complex plane $\mathbb C$ such that the identity mapping id: $(G, j_G) \to (G, k_G)$ is not an η -quasi-symmetric mapping for any homeomorphism $\eta: [0,\infty) \to [0,\infty)$. This result shows that the answer to the related open problem, posed by Hästö, Klén, Sahoo and Vuorinen, is negative.

© 2016 Elsevier Inc. All rights reserved.



CrossMark

ABSTRACT

E-mail addresses: xtwang@stu.edu.cn (X. Wang), q476308142@qq.com (Q. Zhou), 1548643494@qq.com (T. Guan), mzhuang79@163.com (M. Huang), antti.rasila@iki.fi (A. Rasila).

The quasihyperbolic metric $k_G(z_1, z_2)$ between z_1 and z_2 is defined by

$$k_G(z_1, z_2) = \inf\{\ell_{k_G}(\gamma)\},\$$

where the infimum is taken over all rectifiable arcs γ joining z_1 and z_2 in G. It is well-known that for z_1 and $z_2 \in G$, we have $k_G(z_1, z_2) \ge j_G(z_1, z_2)$ (cf. [3]).

The class of uniform domains was introduced by Martio and Sarvas in 1979 [6]. The precise definition is as follows.

Definition 1.1. Given $c \ge 1$, a domain G in \mathbb{R}^n is called *c*-uniform provided that each pair of points z_1, z_2 in G can be joined by a rectifiable arc γ in G satisfying

(1) $\min\{\ell(\gamma[z_1, z]), \ell(\gamma[z_2, z])\} \le c \,\delta_G(z) \text{ for all } z \in \gamma;$ (2) $\ell(\gamma) \le c|z_1 - z_2|,$

where $\ell(\gamma)$ denotes the length of γ and $\gamma[z_j, z]$ stands for the part of γ between z_j and z. An arc γ with the above properties is called a *double c-cone* arc. A domain is called *uniform* if it is *c*-uniform for some constant $c \geq 1$.

The following convenient characterization of uniform domains, by means of the quasihyperbolic and distance ratio metrics, was given by Gehring and Osgood [2]: a proper subdomain G of \mathbb{R}^n is uniform if and only if there exists a constant $\mu \geq 1$, depending only on c, such that for all z_1 and z_2 in G,

$$k_G(z_1, z_2) \le \mu j_G(z_1, z_2).$$

We remark that the above characterization is again slightly different from the one given in [2], as the original result had an additive constant on the right hand side. Later, it was shown by Vuorinen [10] that this constant is not necessary. Motivated by this observation, Vuorinen [10] gave the following more general definition of φ -uniform domains:

Definition 1.2. Let $\varphi: [0, \infty) \to [0, \infty)$ be a homeomorphism. A domain $G \subset \mathbb{R}^n$ is said to be φ -uniform if for all $z_1, z_2 \in G$,

$$k_G(z_1, z_2) \le \varphi \Big(\frac{|z_1 - z_2|}{\min \delta_G(z_1), \delta_G(z_2)} \Big).$$

Obviously, uniformity implies φ -uniformity with $\varphi(t) = \mu \log(1+t)$ for t > 0 with $\mu \ge 1$. It is easy to see that the converse is not true.

Interesting results on the above classes of domains have been obtained by Väisälä [7] (see also [8]). In particular, he observed that the class of φ -uniform domains coincides with the class of uniform domains if φ is a *slow function*, i.e.,

$$\lim_{t \to \infty} \frac{\varphi(t)}{t} = 0.$$

Recently, the geometric properties of this class of domains have been investigated in [4]. The stability of φ -uniform domains has been established [5].

Definition 1.3. A homeomorphism $f: \mathbb{R}^n \to \mathbb{R}^n$ is said to be η -quasi-symmetric if there is a homeomorphism $\eta: [0, \infty) \to [0, \infty)$ such that

 $|x - a| \le t|x - b|$ implies $|f(x) - f(a)| \le \eta(t)|f(x) - f(b)|$

for each t > 0 and for all points x, a and b in \mathbb{R}^n .

Download English Version:

https://daneshyari.com/en/article/4614099

Download Persian Version:

https://daneshyari.com/article/4614099

Daneshyari.com