
J. Math. Anal. Appl. 440 (2016) 516–528

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On a nonlocal extension of differentiation

Ravi Shankar a,b,∗

a Department of Mathematics, University of Nebraska-Lincoln, 1400 R Street, Lincoln, NE 68588,
United States
b Department of Mathematics and Statistics, CSU Chico, 400 West First Street, Chico, CA 95929,
United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 August 2015
Available online 23 March 2016
Submitted by L. Fialkow

Keywords:
Nonlocal operators
Integral equations
Fourier transform
Tempered distributions
Peridynamics
Nonlocal diffusion

We study an integral equation that extends the problem of anti-differentiation. We 
formulate this equation by replacing the classical derivative with a known nonlocal 
operator similar to those applied in fracture mechanics and nonlocal diffusion. We 
show that this operator converges weakly to the classical derivative as a nonlocality 
parameter vanishes. Using Fourier transforms, we find the general solution to the 
integral equation. We show that the nonlocal antiderivative involves an infinite 
dimensional set of functions in addition to an arbitrary constant. However, these 
functions converge weakly to zero as the nonlocality parameter vanishes. For special 
types of integral kernels, we show that the nonlocal antiderivative weakly converges 
to its classical counterpart as the nonlocality parameter vanishes.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We consider integral equations for distributions uε on R of the form:

Dα,εuε(t) := −αε ∗ uε(t) = F (t), t ∈ R, (1.1)

where ∗ denotes the convolution, f ∗ g (t) =
∫
R
f(t − s)g(s) ds, αε is an anti-symmetric function on R that 

depends on a positive “nonlocality parameter” ε, and Dα,ε is a “nonlocal derivative”.
Nonlocality describes interactions over distances; in (1.1), it refers to the fact that F (t) is related to u(s)

via D for values of s far from t, where “far” is quantified by the parameter ε. Mathematically speaking, 
Dαε

is “strongly nonlocal” in the sense of Rogula [18], since the support of Dα,εu is not contained in that 
of u. In contrast, the derivative u′(t) does satisfy this property, so it is a “local” operator (it is also “weakly 
nonlocal”; see [18]).
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We define Dα,ε in such a way that Dα,εf(t) → f ′(t) in some sense as ε → 0. In other words, we think of 
(1.1) as a “nonlocal extension” of the first order ordinary differential equation (ODE):

u′(t) = F (t), t ∈ R. (1.2)

We solve (1.1) using the Fourier transform:

û(ξ) = F [u](ξ) =
∞∫

−∞

e−2πiξtu(t)dt,

u(t) = F−1[û](t) =
∞∫

−∞

e2πitξû(ξ)dξ. (1.3)

Nonlocal models, though well known since the 1800’s viz. fractional derivatives, have recently found 
successful application in Silling’s [22] theory of peridynamic fractures; for applications of these nonlocal 
operators in nonlocal diffusion and image processing, see [2,10].

The success of nonlocal models stems from the ease with which they handle singularities. Although classi-
cal models using differential equations cannot well describe discontinuous solutions to these equations, such 
as those occurring in fracture dynamics, the integral operators applied by Silling suffer no such difficulties. 
Using nonlocal operators in these classical models extends the types of physical processes that we can model 
and the types of qualitative behavior that we can describe.

An important feature of these operators is that they are extensions of classical differential operators. 
In [6], it is shown that such first order nonlocal operators converge strongly in L2 to classical partial 
derivatives as a nonlocality parameter vanishes. This extensivity property is important since it allows us 
to preserve much of the physical structure that makes up classical differential models. In addition, when 
the classical descriptions are correct, the nonlocal frameworks can recover these results by passing to the 
“classical limits”.

The majority of the nonlocal literature has focused on so-called second order models. These nonlocal 
models extend second order partial differential equations and boundary value problems, such as the wave 
equation [25], Laplace’s equation [15] and the heat equation [1] (see also the nonlocal counterpart to the 
fourth order biharmonic equation [17]). However, the literature for nonlocal extensions of first order models 
is more sparse. Du et al. [7] studied a nonlocal extension of the nonlinear advection equation. Among other 
results, they showed that inviscid solutions to this nonlinear equation do not blow up in finite time, a stark 
contrast to those of the classical equation. There is also some literature available for first order models using 
fractional derivatives (see [12] for a large set of examples).

Given the success of these nonlocal operators in extending second order models, we are interested in 
their application to first order models, specifically first order ordinary differential equations (ODEs). First 
order models are ubiquitous in the natural sciences. One area that is currently under active research is the 
treatment of discontinuous models. These are ODEs that have discontinuous “forcing terms”, and have ap-
plications in the flow through porous soil [9], static friction problems [23], and optimal control with discrete 
feedbacks [14]. A challenge with classical (i.e. differential) frameworks is to solve these problems numeri-
cally [4], since the classical derivatives for solutions to these problems do not exist everywhere. As a result, 
many heuristic and complicated numerical methods are needed to solve these equations computationally. 
Although we do not pursue this here, one motivation for studying nonlocal first order models is the possibil-
ity of replacing classical derivatives in these equations with nonlocal derivatives. It is possible that solving 
discontinuous integral equations, which do not contain classical derivatives, is a more straightforward task 
than solving discontinuous ODEs.

The contributions of this paper are as follows.
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