
Transaction-based online debug for NoC-based multiprocessor SoCs q

Mehdi Dehbashi c,⇑, Görschwin Fey a,b

a Institute of Computer Science, University of Bremen, Bremen, Germany
b Institute of Space Systems, German Aerospace Center (DLR), Bremen, Germany
c Infineon Technologies AG, Munich, Germany

a r t i c l e i n f o

Article history:
Available online 11 March 2015

Keywords:
Transaction-based online debug
System-on-Chip (SoC)
Network-on-Chip (NoC)

a b s t r a c t

As complexity and size of Systems-on-Chip (SoC) grow, debugging becomes a bottleneck for designing IC
products. In this paper, we present an approach for online debug of NoC-based multiprocessor SoCs. Our
approach utilizes monitors and filters implemented in hardware. Monitors and filters observe and filter
transactions at run-time. They are connected to a Debug Unit (DU). Transaction-based programmable
Finite State Machines (FSMs) in the DU check assertions online to validate the correct relation of transac-
tions at run-time. The experimental results show efficiency and performance of our approach.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Modern high-performance Systems-on-Chip (SoC) include
many IP cores such as processors and memories. Network-
on-Chips (NoC) have been proposed as a scalable interconnect
solution to integrate large multiprocessor SoCs [2] [3]. Having a
large SoC with complex communication among its cores, achieving
complete verification coverage at pre-silicon stage is almost
impossible. Therefore in addition to electrical bugs, some design
bugs may also appear in the final prototype of an SoC.

The idea of transaction-based communication-centric debug is
introduced in [4] to debug complex SoCs which interact through
concurrent interconnects such as NoC. The transactions are
observed using monitors [5] and the debug control unit can control
the execution of the SoC (stopping, single stepping, etc.). In [6],
transactions are stored at run-time in a trace buffer using on-chip
circuits. After an SoC run, the content of the trace buffer is read and
analyzed offline with software. The analysis software tries to find
certain patterns [7] in the extracted transactions that are defined
by their Transaction Debug Pattern Specification Language (TDPSL).
Because of limited size of a trace buffer, getting an execution trace
of the transactions related to the time of bug activation is a chal-
lenging problem. To overcome this problem, the content of the
trace buffer is utilized to backtrace the transactions along their

execution paths [8]. The backtracing is performed in transaction-
level states using Bounded Model Checking (BMC). However, back-
tracing needs formal pre-image computations which can blow up
for large and complex designs [9]. To address this problem, we
need to have online detection to stop the SoC close to the time of
bug activation at the transaction level.

In this paper, we present a transaction-based debug infrastruc-
ture which can be used not only for online debug and online sys-
tem recovery but also for interactive debug in which an external
debug platform programs the FSMs and the filters according to
the considered assertions at each round of debugging. Our hard-
ware infrastructure contains monitors, filters, and a debug network
including Debug Units (DU). Filters and DUs are programmed
according to the transaction-based assertions defined by TDPSL.
Transactions are monitored only at master interconnects. Slaves
send information to masters. This redundant information is used
to observe the elements of transactions online. No modification
of the internal components of the NoC is required. At run-time
the programmable FSMs in the DUs investigate the assertions
online and detect an error. Upon detection of an error, the DU
recovers the SoC by informing the masters which have participated
in the observed error. Then, the corresponding masters start the
recovery process at run-time. Also we identify the requirements
which a debug infrastructure has to fulfill in order to perform
transaction-based online debug.

The main contributions of this paper are as follows:

– Introducing a debugging infrastructure to transaction-based
online debug of NoC-based SoCs without modifying the internal
components of the corresponding NoC (non-intrusive to the
NoC).

http://dx.doi.org/10.1016/j.micpro.2015.03.003
0141-9331/� 2015 Elsevier B.V. All rights reserved.

q Mehdi Dehbashi did this work as part of his PhD in the University of
Bremen. This work has been supported in part by the University of Bremen’s
Graduate School SyDe, funded by the German Excellence Initiative and in part by
the German Research Foundation (DFG, grant no. FE 797/6-1). This paper is an
extended version of [1].
⇑ Corresponding author.

E-mail address: fey@informatik.uni-bremen.de (G. Fey).

Microprocessors and Microsystems 39 (2015) 157–166

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.03.003&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.03.003
mailto:fey@informatik.uni-bremen.de
http://dx.doi.org/10.1016/j.micpro.2015.03.003
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


– Analyzing and finding transaction-based debug patterns at-speed
using debug units including programmable filters and FSMs.

– Presenting an ordering mechanism in the routers of the debug
network to order the transactions online.

– Online system recovery without stopping and interrupting the
NoC.

The experimental results show the efficiency of our approach
using different assertion patterns defined by TDPSL such as race,
deadlock, and livelock. An NoC-based SoC using a mesh network
is setup in the Nirgam NoC simulator [10] to evaluate our
approach. Also we show the effectiveness of the proposed online
recovery in the experimental results.

The remainder of this paper is organized as follows. Related
work is discussed in Section 2. Section 3 introduces preliminary
information on transactions and TDPSL. Our debug method includ-
ing hardware and software parts is explained in Section 4. The
debug patterns and their corresponding FSMs are explained in
Section 5. This section also presents experimental results on an
NoC-based SoC. The last section concludes the work.

2. Related work

Previous work also considered infrastructures for SoC debug.
The existing debug infrastructures for complex SoCs are reviewed
in [11]. These infrastructures support debugging such that the
internal nodes become observable and controllable from the out-
side. The work in [12] presents a Design-for-Debug (DfD) tech-
nique for NoC-based SoCs. The technique enables data transfer
between a debugger and a Core-Under-Debug (CUD) through the
available NoC to facilitate debugging. A debug platform to support
concurrent debug access to the CUDs and the NoC in a unified
architecture is proposed in [13,14]. This platform is realized by
introducing core-level debug probes in between the CUDs and
their network interfaces and a system-level debug agent. The work
in [15] proposes a ring-based NoC architecture to debug SoCs. The
NoC is used to send back the information observed by monitors to
the debugger. A Non-Uniform Debugging Architecture (NUDA) is pro-
posed in [16] to debug many-core systems. A NUDA node in each
cluster has three main parts: nanoprocessor, memory and commu-
nication. The NUDAs are distributed across a set of hierarchical
clusters and are connected to each other through a ring intercon-
nection. Then the address space is monitored using non-uniform
protocols for race detection. Monitoring the address space without
abstraction consumes a large storage and increases the latency of
the error detection.

NoC test and diagnosis is the main focus in most of the previous
work. Packet address driven test configurations are utilized in [17]
to test and to diagnose regular mesh-like NoCs using a functional
fault model. Then, link faults are diagnosed using test results and
a diagnosis tree. The system test is modeled at the transaction level
in [18] in order to facilitate test design space exploration, as well as
the validation of test strategies and schedules. Interconnect faults
in Torus NoCs are detected and diagnosed using BIST structures
in [19]. Afterwards, the NoC is repaired by activating alternative
paths for faulty links. In [20] an NoC with a faulty router or a bro-
ken link is repaired using spare routers. The inherent structural
redundancy of the NoC architecture is exploited in a cooperative
way to detect the faults using BIST [21]. Also diagnosis units in
switches are utilized to localize a fault. In the diagnosis unit there
are different comparators to compare data from all the possible
pairs of switch input ports. A comprehensive defect diagnosis for
NoCs is proposed in [22]. The approach uses an end-to-end error

symptom collection mechanism [23] to localize datapath faults
and a distributed counting and timeout-based technique to localize
faulty control components [22]. The work in [24] diagnoses the
NoC switch faults using hardware redundancy in each switch and
a high level fault model. These approaches focus only on electrical
bugs in the components of an NoC. However we consider design
bugs which influence communications in an NoC-based SoC.

The work in [4] proposes a communication-centric debug
approach. The approach focuses on the communication and the
synchronization between the IP cores. Their approach uses not
only monitors on the IP interconnects but also monitors on the
internal components of an NoC such as routers. Debug data is
read-out using scan chains and Test Access Ports (TAP). In our work,
we do not transfer the debug data out of the SoC. The debug data is
analyzed online using debug units. Also we monitor only the mas-
ter interconnects without modifying the internal components of an
NoC. The work in [6] uses trace buffers to store the transactions at
run-time. The content of the trace buffer is analyzed offline in
order to form transactions and to find debug patterns. Their
approach monitors the bus to store the events in the trace buffer.
However, we present an approach to debug NoC-based SoCs. We
form the transactions online using distributed monitors and debug
units. Also the debug patterns are found at run-time.

3. Preliminaries

3.1. Transaction

In this section we shortly explain the transaction elements from
[25,6]. Each transaction includes a request and a response. Masters
request and slaves respond. Each transaction has four basic ele-
ments: Start of Request (SoRq), End of Request (EoRq), Start of
Response (SoRp), and End of Response (EoRp). In TLM, SoRq corre-
sponds to putting the request in the channel by the master. EoRq
is getting the request by the slave. SoRp corresponds to putting
the response in the channel by the slave. EoRp is getting the
response from the channel by the master. Also there are two addi-
tional elements which are called: Request Error (ErrRq) and
Response Error (ErrRp). These elements handle error conditions
and correspond to any kind of error that causes a request or a
response to fail.

3.2. Transaction Debug Pattern Specification Language (TDPSL)

TPDSL has three layers: Boolean layer, temporal layer, and veri-
fication layer [6]. The Boolean layer includes trans exp which repre-
sents the basic elements of transactions. The trans exp format is as
follows:

trans type ðmaster; slave; type; address; tagÞ

Field trans type can be any transaction element mentioned in
Section 3.1 as well as the Start of Transaction (SoTr) and the End
of Transaction (EoTr) which are similar to SoRq and EoRp respec-
tively. Fields master and slave specify the ID of master and slave.
Field type can be Rd or Wr. Field address indicates the slave address
symbolically as SAME, SEQ, and OTHER. Field tag indicates the
transaction number and is only used for buses that allow non-
blocking requests and out-of-order responses [6]. In our paper,
we show a transaction without considering the field tag.

The motivation to use symbols for the address field is to
abstract and to compress the address bits. In this case, only the
compact address information is stored or sent via network for
debugging. The symbols can be defined with respect to the applica-
tion and the granularity of debugging. SAME specifies that in the
current transaction, slave address is same as the address in the pre-
vious transaction for this slave. SEQ specifies that in the current

158 M. Dehbashi, G. Fey / Microprocessors and Microsystems 39 (2015) 157–166



Download	English	Version:

https://daneshyari.com/en/article/461412

Download	Persian	Version:

https://daneshyari.com/article/461412

Daneshyari.com

https://daneshyari.com/en/article/461412
https://daneshyari.com/article/461412
https://daneshyari.com/

