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This paper investigates the location of the zeros of a sequence of polynomials 
generated by a rational function with a binomial-type denominator. We show that 
every member of a two-parameter family consisting of such generating functions 
gives rise to a sequence of polynomials {Pm(z)}∞m=0 that is eventually hyperbolic. 
Moreover, the real zeros of the polynomials Pm(z) form a dense subset of an interval 
I ⊂ R+, whose length depends on the particular values of the parameters in the 
generating function.
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1. Introduction

The study of the location of zeros of polynomials is one of the oldest endeavors in mathematics. The 
prolific mathematical production of the nineteenth century included a number of advances in this endeavor. 
The unsolvability of the general quintic equation together with the fundamental theorem of algebra led to 
the consideration that when it comes to extracting information about the zeros of a complex polynomial 
from its coefficients, one should perhaps strive to determine subsets of C where the zeros must lie,1 rather 
than looking for the exact location of the zeros. The development of the Cauchy theory for analytic functions 
provided some of the classic machinery suitable for such investigations, including Rouché’s theorem, the 
argument principle and the Routh–Hurwitz condition for left-half plane stability. We mention these results 
not only because they are powerful tools, but also because they embody a fundamental dichotomy. Explicit 
criteria for the location of the zeros of a polynomial in terms of its coefficients may severely restrict the 
domain to which they apply, whereas ubiquitous applicability of a theorem to various domains may render 
the result difficult to use.

The Gauss–Lucas theorem, relating the location of the zeros of p′(z) to those of the polynomial p(z), 
pioneered a new approach to an old question: instead of studying the zeros of a function, one can study the 
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1 Although the publication of La Géometrie predates the early XIXth century by almost two hundred years, from this perspective, 
Descartes’ rule of signs should be mentioned, as it gives information on the number of real positive, real negative, and non-real 
zeros of a real polynomial.
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behavior of the zero set of a function under certain operators. In this light, given the Taylor expansion of a 

(real) entire function f(x) =
∞∑
k=0

γk
k! x

k, one can interpret f(x) as the result of the sequence {γk}∞k=0 acting 

on the function ex by forming a Hadamard product.2 Thus, complex sequences have a dual nature: they are 
coefficients of ‘polynomials of infinite degree’ (à la Euler), as well as linear operators on C[x]. G. Pólya and 
J. Schur’s 1914 paper [10] was a major milestone in understanding how sequences (as linear operators) affect 
the location of the zeros of polynomials. More precisely, Pólya and Schur gave a classification of real sequences 
that preserve reality of zeros of real polynomials, and initiated a research program on stability preserving 
linear operators on circular domains, which was recently completed by J. Borcea and P. Brändén [2].

Since the work of Pólya and Schur, the study of sequences as linear operators on R[x] has attracted a 
great amount of attention. We remark here only that real sequences, when looked at as operators on R[x], 
admit a representation as a formal power series

{γk}∞k=0 ∼
∞∑
k=0

Qk(x)Dk,

where D denotes differentiation, and the Qk(x)s are polynomials with degree k or less (see for example [9]). 
In [5] the first author and A. Piotrowski study the extent to which the ‘generated’ sequence {Qk(x)}∞k=0
encodes the reality preserving properties of the sequence {γk}∞k=0, and find that if this latter sequence is a 
Hermite-diagonal3 reality preserving operator, then all of the Qk(x)s must have only real zeros.

The present paper extends the works of S. Beraha, J. Kahane, and N.J. Weiss [1], A. Sokal [11] and K. Tran 
[12,13], by studying a large family of generating functions which give rise to sequences of polynomials with 
only real zeros. Despite the many similarities between our work and that of R. Boyer and W. Goh [3,4], there 
is a key difference in the nature of our results. While Boyer and Goh study zero attractors, we study the 
zero loci of sequences of polynomials. Our main result (see Theorem 1) concerns a sequence of polynomials, 
whose generating function is rational with a binomial-type denominator.

Theorem 1. Let n, r ∈ N such that max{r, n} > 1, and set Dn,r(t, z) := (1 − t)n + ztr. For all large m, the 
zeros of the polynomial Pm(z) generated by the relation

∞∑
m=0

Pm(z)tm = 1
Dn,r(t, z)

(1)

lie on the interval

I =

⎧⎪⎨⎪⎩
(0,∞) if n, r ≥ 2

(0, nn/(n− 1)n−1) if r = 1
((r − 1)r−1/rr,∞) if n = 1

Furthermore, if Z(Pm) denotes the set of zeros of the polynomial Pm(z), then 
⋃

m�1 Z(Pm) is dense in I.

Although this result is asymptotic in nature, we do believe that in fact all of the generated polynomials 
have only real zeros. Given that we have no proof of this claim at this time, we pose this stronger statement 
as an open problem (see Problem 12 in Section 4).

2 We direct the reader to the beautiful works of Hardy [7] and Ostrovskii [8] concerning the zero loci of certain entire functions 
obtained this way.
3 By Γ = {γk}∞

k=0 being a Hermite diagonal operator we simply mean that Γ[Hn(x)] = γnHn(x) for all n, where Hn(x) denotes 
the nth Hermite polynomial.
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