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Mellin convolution equations acting in Bessel potential spaces are considered. The 
study is based upon two results. The first one concerns the interaction of Mellin 
convolutions and Bessel potential operators (BPOs). In contrast to the Fourier 
convolutions, BPOs and Mellin convolutions do not commute and we derive an 
explicit formula for the corresponding commutator in the case of Mellin convolutions 
with meromorphic symbols. These results are used in the lifting of the Mellin 
convolution operators acting on Bessel potential spaces up to operators on Lebesgue 
spaces. The operators arising belong to an algebra generated by Mellin and Fourier 
convolutions acting on Lp-spaces. Fredholm conditions and index formulae for such 
operators have been obtained earlier by one of the authors and are employed here. 
The results of the present work have numerous applications in boundary value 
problems for partial differential equations, in particular, for equations in domains 
with angular points.

© 2016 Elsevier Inc. All rights reserved.

0. Introduction

Boundary value problems for elliptic equations in domains with angular points play an important role in 
applications and have a rich and exciting history. A prominent representative of this family is the Helmholtz 
equation. In the classical W1-setting, the existence and uniqueness of the solution of coercive systems with 
various types of boundary conditions and various elliptic and even non-linear partial differential operators 
are easily obtainable by using the celebrated Lax–Milgram Theorem (see, e.g., [8,30] and the recent pa-
per [21] where Laplace–Beltrami equations are considered on smooth surface with Lipschitz boundary). 
Similar problems arise in new applications in physics, mechanics and engineering. Thus recent publica-
tions on nano-photonics [1,25] deal with physical and engineering problems described by BVPs for the 
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Helmholts equation in 2D domains with angular points. They are investigated with the help of a modified 
Lax–Milgram Lemma for so-called T -coercive operators. Similar problems occur for the Lamé systems in 
elasticity, Cauchy–Riemann systems, Carleman–Vekua systems in generalized analytic function theory etc.

Despite an impressive number of publications and ever growing interest to such problems, the results 
available to date are not complete. In particular, serious difficulties arise if information on the solvability in 
non-classical setting in the Sobolev spaces W1

p, 1 < p < ∞ is required, and one wants to study the solvability 

of equivalent boundary integral equations in the trace spaces W1−1/p
p on the boundary. Integral equations 

arising in this case often have fixed singularities in the kernel and are of Mellin convolution type. For 
example, [6] describes how model BVPs in corners emerge from the localization of BVP for the Helmholtz 
equation in domains with Lipschitz boundary. Consequently, an attempt to study the corresponding Mellin 
convolution operators in Bessel potential spaces has been undertaken in [19]. However, the main Theorem 2.7 
and Theorem 4.1 (based on Theorem 2.7) are incorrect. The aim of the present work is to provide correct 
formulations and proofs of Theorem 2.7 and 4.1 from [19]. We also hope that the results of the present 
paper will be helpful in further studies of boundary value problems for various elliptic equations in Lipschitz 
domains.

Consider the following BVP with the mixed Dirichlet–Neumann boundary conditions

⎧⎪⎨
⎪⎩

Δu(x) + k2u(x) = 0, x ∈ Ωα,

u+(t) = g(t), t ∈ R
+,

(∂νu)+(t) = h(t), t ∈ Rα

(1)

in the corner Ωα of magnitude α,

∂Ωα = R
+ ∪ Rα, R

+ = (0,∞),

Rα := {teiα = (t cos α, t sin α) : t ∈ R
+}

with a complex wave number Im k �= 0. In [20] the BVP (1) is reduced to the following equivalent system 
of boundary integral equations on R+:

⎧⎪⎨
⎪⎩

ϕ + 1
2
[
K1

eiα + K1
e−iα

]
ψ = G1,

ψ − 1
2
[
K1

eiα + K1
e−iα

]
ϕ = H1.

(2)

Here

K1
e±iαψ(t) := 1

π

∞∫
0

ψ(τ)dτ
t− e±iατ

, 0 < |α| < π, (3)

are Mellin convolution operators with homogeneous kernels of order −1 (see e.g. [16,17] and Section 1
below), also called integral equations with fixed singularities in the kernel. Similar integral operators arise 
in the theory of singular integral equations with complex conjugation if the contour of integration possesses 
corner points. A complete theory of such equations was worked out by R. Duduchava and T. Latsabidze, 
whereas various approximation methods have been investigated in [13]. For a more detailed survey of this 
theory, applications in elasticity, and numerical methods for the corresponding equations we refer the reader 
to [16,17,32] and [11,12]. Note that a similar approach has been employed by M. Costabel and E. Stephan 
[9,10] in order to study boundary integral equations on curves with corner points.
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