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We consider a consumption-investment problem in which the relevant economic 
conditions change, depending on whether the wealth exceeds a critical level or not. 
We propose a dynamic programming method to solve the problem by dividing the 
problem into subproblems split by wealth levels, and imposing a freeze condition 
at the boundaries. We then join the solutions of the subproblems so that the 
resulting value function is piecewise C2. The methodology is illustrated through 
an application to a problem with nonnegative life insurance constraint.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

When the behavior of an agent changes abruptly – either voluntarily or involuntarily – we call it a phase 
transition. Transitions are often associated with some critical wealth levels. Bankruptcy is an obvious phase 
transition where consumption and investment activities come to a halt. Although zero wealth is a natural 
critical level, withdrawal from risky investments and implementation of austerity measures may occur when 
the wealth falls below a certain positive amount. In the other direction, when the wealth grows beyond a 
certain threshold, new investment opportunities may become available, and/or the investor may feel more 
comfortable with taking riskier opportunities. See [1,2,8].

We study optimal behavior of an agent when the relevant economic conditions change, depending on 
whether the current wealth exceeds a critical level or not. We allow the consumption preference to change 
as well. We first divide the problem into subproblems by wealth level in Section 2, and apply the standard 
dynamic programming approach in [3] to each subproblem. We find that when the wealth process is confined 
by a positive critical level, a non-monotonicity problem arises, and propose a modification to handle the 
problem.
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Section 3 deals with the main problem using the methodologies developed in Section 2. We conjecture 
a trial function by joining individual solutions, so that the resulting function is C1 at the critical wealth 
level. We then verify that our trial function solves the Bellman equation and is indeed the value function.

We consider an application in Section 4. A simple life insurance model with nonnegative premium con-
straint, which is the first attempt to treat nonnegative life insurance within a consumption-investment 
framework. See [6] and [7].

2. Consumption-investment with freeze boundary

Using the mutual fund theorem (two fund separation theorem), we may assume there are two assets in 
the financial market: one is a risk-free asset, the other a risky asset (see [3]). We assume the risk free rate
is a constant r and the risky asset’s price process (St)t≥0 follows a geometric Brownian motion, as in [3,4], 
and [5] etc.: dSt = St(αdt + σ dwt), where (wt)t≥0 a standard Brownian motion. Thus, the agent’s wealth 
process (xt)t≥0 evolves according to dxt = (μπt + rxt− ct)dt +σπt dwt, t ≥ 0, where μ = α− r is the excess 
rate of return of the risky asset, ct ≥ 0 and πt the agent’s consumption rate and investment in the risky 
asset, respectively, at time t. The agent chooses c = (ct)t≥0 and π = (πt)t≥0 dynamically to maximize his 
total utility from consumption in the presence of a critical wealth level xc ≥ 0, at which the agent is offered 
the option to cease all economic activities in exchange for the consolation value P in terms of remaining 
utility. Thus, the value function V is defined as

V (x0) = V (x0;xc, P ) = sup
(ct,πt)t≥0

E

⎡
⎣ τ∫

0

e−βtU(ct) dt + e−βτP

⎤
⎦ ,

where β > 0 is the subjective discount rate, U the utility function from the instantaneous consumption 
which is strictly increasing and strictly concave, and τ the first time at which the agent wealth hits the 
critical level xc ≥ 0.

2.1. Downward freeze

Let the initial wealth be greater than the critical level, that is, x0 > xc ≥ 0. The case where xc = 0 is 
treated in [3] with the assumption that U(0)/β ≤ P < limc→∞ U(c)/β. If the second inequality did not 
hold, then the value function would be identically equal to P but with no optimal policy, as explained in 
[3], since instantaneous bankruptcy is impossible. Therefore, we assume the second inequality holds too. 
Note that the lower bound P∗ for the consolation value P in this case is the discounted utility for zero 
consumption stream: P∗ = U(0)/β =

∫∞
0 e−βtU(0)dt. If P < U(0)/β in this case, the agent should behave 

as if P were U(0)/β since this does not result in the wealth level touching xc = 0, as explained in [3]. Some 
questions arise when xc > 0: (a) What would the economically meaningful lower bound P∗ be? (b) What 
would the policy of the agent be to avoid the freeze if P < P∗? Would it be feasible? (c) How does the 
optimal strategy change as the consolation value changes? Hereafter, we consider the case where xc > 0
with the assumption that P < limc→∞ U(c)/β.

From the Bellman equation

βV (x) = max
c,π

[
μπV ′(x) + (rx− c)V ′(x) + 1

2σ
2π2V ′′(x) + U(c)

]
, (2.1)

we may derive a second order differential equation as in [3]

γy2X ′′(y) + (β − r + 2γ)yX ′(y) − rX(y) = −I(y) (2.2)
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