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Cubic partitions are a special kind of bi-partitions whose name is inspired by a 
connection between a cubic continued fraction and an arithmetic property of this 
bi-partition. There are two partition statistics, namely rank and crank, for cubic 
partitions, which explain cubic partition congruences combinatorially. We obtain 
asymptotics for the number of cubic partitions of rank (resp. crank) m which reveal 
the distribution of the rank (resp. crank) among cubic partitions. As applications, 
we derive asymptotic inequalities between cubic partition rank and crank functions, 
and we remark upon the similarities and the differences between these and the 
corresponding inequalities for ordinary partitions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

To find a combinatorial explanation for Ramanujan’s striking three congruences of the partition function 
p(n),

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11),
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several partition statistics [3,11,13–15] have been introduced. Among these, the rank introduced by 
F.J. Dyson [11] and the crank defined by G.E. Andrews and F.G. Garvan [3] have been of greatest in-
terest. Recent study of partition ranks and cranks has been focused on how they are distributed and what 
the differences between their distributions are (for the precise definitions of partition rank and crank, see 
Section 2). In this direction, Andrews, S.H. Chan, and the first author [2] proved that

∑
m∈Z

mkM(m,n) >
∑
m∈Z

mkN(m,n) (1.1)

for all positive integers k and n, where M(m, n) (resp. N(m, n)) is the number of ordinary partitions of n
with crank (resp. rank) m. As 

∑
m∈Z

M(m, n) =
∑

m∈Z
N(m, n) = p(n), this result implicitly says that it 

is likely that M(m, n) > N(m, n) for relatively large m. On the other hand, K. Bringmann and J. Dousse 
[5] settled an old conjecture of Dyson; namely, under certain conditions on m,

M(m,n) = π

4
√

6n
sech2

(
πm
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√
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.

More recently, Dousse and M. Mertens [10] showed that the same asymptotic formula holds for N(m, n); 
i.e., the distribution for cranks and ranks are asymptotically similar when m is relatively smaller than n

(more precisely, for |m| ≤
√
n log n

π
√

6 and actually this range covers almost all partitions [5, Corollary 1.3]).
In this paper, we are going to focus on the asymptotic distribution of two partition statistics, ranks 

and cranks for cubic partitions. Cubic partitions were introduced by H.-C. Chan in a series of papers [6–8]. 
H.-C. Chan showed that the cubic partition function c(n) satisfies a Ramanujan-type congruence c(3n +2) ≡
0 (mod 3) [6] and further congruences modulo higher powers of 3 [7]. Analogous to Ramanujan’s partition 
congruence modulo 5 derived from Rogers–Ramanujan continued fraction identities, a Ramanujan-type 
congruence for cubic partitions can be obtained from a cubic continued fraction identity, and this is the 
motivation for the name “cubic”. The cubic partition function c(n) is defined by

∞∑
n=0

c(n)qn = 1
(q; q)∞(q2; q2)∞

.

Here and in the rest of this paper, we will use the following standard q-series notations:

(a; q)0 := 1,

(a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1), n ≥ 1,

(a; q)∞ := lim
n→∞

(a; q)n, |q| < 1.

We can interpret c(n) as the number of 2-color partitions of n with colors r(ed) and b(lue) subject to the 
restriction that the color b appears only in even parts. For example, there are four such partitions of 3:

3r, 2r + 1r, 2b + 1r, 1r + 1r + 1r.

Motivated by cubic partition congruences [6,7], the first author introduced a cubic partition crank which 
explains infinitely many congruences for powers of 3 explicitly [16] (see Section 2 for a definition). If we 
define C(m, n) as the number of cubic partitions of n with crank m, then

∞∑
n=0

∑
m∈Z

C(m,n)ζmqn = (q; q)∞(q2; q2)∞
(ζq; q)∞(ζ−1q; q)∞(ζq2; q2)∞(ζ−1q2; q2)∞

. (1.2)
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