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In this paper, we propose an approach for approximating the value function and 
an ε-optimal policy of continuous-time Markov decision processes with Borel state 
and action spaces, with possibly unbounded cost and transition rates, under the 
total expected discounted cost optimality criterion. Under adequate assumptions, 
which in particular include that the transition rate has a density function with 
respect to a reference measure, together with piecewise Lipschitz continuity of the 
elements of the control model, we approximate the original controlled process by 
a model with finite state and action spaces. The approximation error is related 
to the 1-Wasserstein distance between suitably defined probability measures and 
approximating measures with finite support. We also study the case when the 
reference measure is approximated with empirical distributions and we show that 
convergence of the approximations takes place at an exponential rate in probability.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation and contribution

This paper concerns approximating numerically the value function and computing an ε-optimal policy of 
a continuous-time Markov decision processes (CTMDP) with Borel state and action spaces, and possibly 
unbounded cost and transition rates, under the total expected discounted cost optimality criterion. From a 
theoretical point of view, such models have been extensively studied (using the techniques, e.g., of dynamic 
and linear programming), but except for some specific models, it is not possible to determine explicitly an 
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optimal policy and the value function of the CTMDP. This shows the need for numerical methods to get 
quasi-optimal solutions for these problems.

In this paper we will deal with a CTMDP model M with Borel state space X and action space A, 
and action sets A(x) ⊆ A for x ∈ X. Our main assumptions on M consist in supposing the existence 
of a strictly unbounded function w (bounding the transition and cost rates of the M) satisfying suitable 
Lyapunov type conditions, and assuming that the elements of the control model and related functions (cost 
rate, densities, action sets multifunction, etc.) are piecewise Lipschitz continuous. This allows dealing with, 
e.g., discontinuous transition and cost rates, which is an important departure point from previous works; 
see, e.g., [8–10]. Our approximation technique proceeds in three steps, each one with its own approximation 
error (we try to give a flavor of our methods in this paper, and the steps described next are simplified 
versions of the techniques we will develop later).

1. The first step is to approximate M with control models {Mk}k≥1 with bounded transition and cost 
rates. The dynamic of Mk is similar to that of M as long as the original process remains in a specific 
subset Sk of the state space (with the property that Sk ↑ X as k → ∞), and it is “killed” upon leaving 
the set Sk. The error when approximating M with Mk is related to the strictly unbounded function w.

2. The second step consists in discretizing the state space of Mk. To do so, it is assumed that the positive 
part q+

k (dy|x, a) of the transition rates of Mk is absolutely continuous with respect to a so-called 
reference probability measure μk, i.e., q+

k (dy|x, a) = pk(y|x, a)μ(dy) for some density function pk. The 
idea is to approximate μk with a probability measure μ̂k with finite support Γ̂k, and then consider the 
finite state space Γ̂k. Typically, the error made with this approximation is shown to depend on the 
1-Wasserstein distance between μk and μ̂k, denoted by W1(μk, μ̂k).

3. Finally, the action sets A(x) for x ∈ Γ̂k are replaced with finite sets Aδ(x) ⊆ A(x). The error of 
this approximation is measured in terms of the Hausdorff distance between A(x) and Aδ(x), which is 
assumed to be of (small) order δ > 0.

We note that, in fact, steps 2 and 3 will be performed somehow simultaneously. Following this proce-
dure we have therefore approximated M with a control model with finite state space Γ̂k and finite action 
sets Aδ(x). Choosing k large enough, and small enough δ > 0 and W1(μk, μ̂k), we can thus approximate 
the optimal discounted value and obtain an ε-optimal policy of M.

Regarding the construction of a probability measure μ̂k with finite support that approximates μk in the 
1-Wasserstein metric, several approaches are possible. One consists in deriving μ̂k starting from a covering 
of Sk with small radius. This “deterministic” approach allows controlling the distance W1(μk, μ̂k) but it may 
pose additional computational challenge. Another possibility is to use a “random” approximation by consid-
ering the empirical probability measure μ̂n

k obtained from n i.i.d. draws from μk. The approximation error 
W1(μk, μ̂n

k ) (which is a random variable) is measured with a concentration inequality for the non-asymptotic 
deviation. In this case, the approximation errors converge in probability to zero at an exponential speed in 
the sample size n.

The approximation of discrete-time Markov decision processes (DTMDP) can be traced back to the mid-
dle of the 70’s with the work of T.L. Morin [17, Section 2.3]. The techniques of approximation are typically 
based on the discretization of the state and actions spaces, and on the convergence properties of the op-
erator associated to the dynamic programming optimality equation. Bounds on the error or convergence 
rates for the approximating control model can be derived depending on the regularity hypotheses made on 
the parameters of the model. There exists a huge literature related to that approach: see, among others, 
[1,2,7,8,12,14,16,24,27] and the references therein. To some extent, our approach here (for CTMDPs) is 
related to the references [1, Chapter 17] and [7] on DTMDPs. Indeed, a common hypothesis is to assume 
that the stochastic kernel governing the dynamics of the control model (either the transition rates or the 
transition probabilities) has a density function with respect to a reference measure. However, our approxi-
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