# Multiple-angle formulas of generalized trigonometric functions with two parameters ${ }^{\text {Th }}$ 

Shingo Takeuchi<br>Department of Mathematical Sciences, Shibaura Institute of Technology, Japan ${ }^{1}$

## A R T I C L E I N F O

## Article history:

Received 19 April 2016
Available online 11 July 2016
Submitted by S. Cooper
Dedicated to Professor Eiji Yanagida on the occasion of his 60th birthday

## Keywords:

Multiple-angle formulas
Generalized trigonometric functions $p$-Laplacian
Eigenvalue problems
Pendulum equation
Lemniscate


#### Abstract

Generalized trigonometric functions with two parameters were introduced by Drábek and Manásevich to study an inhomogeneous eigenvalue problem of the $p$-Laplacian. Concerning these functions, no multiple-angle formula has been known except for the classical cases and a special case discovered by Edmunds, Gurka and Lang, not to mention addition theorems. In this paper, we will present new multiple-angle formulas which are established between two kinds of the generalized trigonometric functions, and apply the formulas to generalize classical topics related to the trigonometric functions and the lemniscate function.


© 2016 Elsevier Inc. All rights reserved.

## 1. Introduction

Let $p, q \in(1, \infty)$ be any constants. We define $\sin _{p, q} x$ by the inverse function of

$$
\sin _{p, q}^{-1} x:=\int_{0}^{x} \frac{d t}{\left(1-t^{q}\right)^{1 / p}}, \quad 0 \leq x \leq 1
$$

and

$$
\begin{equation*}
\pi_{p, q}:=2 \sin _{p, q}^{-1} 1=2 \int_{0}^{1} \frac{d t}{\left(1-t^{q}\right)^{1 / p}}=\frac{2}{q} B\left(\frac{1}{p^{*}}, \frac{1}{q}\right) \tag{1.1}
\end{equation*}
$$

[^0]where $p^{*}:=p /(p-1)$ and $B$ denotes the beta function. The function $\sin _{p, q} x$ is increasing in $\left[0, \pi_{p, q} / 2\right]$ onto $[0,1]$. We extend it to $\left(\pi_{p, q} / 2, \pi_{p, q}\right]$ by $\sin _{p, q}\left(\pi_{p, q}-x\right)$ and to the whole real line $\mathbb{R}$ as the odd $2 \pi_{p, q}$-periodic continuation of the function. Since $\sin _{p, q} x \in C^{1}(\mathbb{R})$, we also define $\cos _{p, q} x$ by $\cos _{p, q} x:=\left(\sin _{p, q} x\right)^{\prime}$. Then, it follows that
$$
\left|\cos _{p, q} x\right|^{p}+\left|\sin _{p, q} x\right|^{q}=1 .
$$

In case $p=q=2$, it is obvious that $\sin _{p, q} x, \cos _{p, q} x$ and $\pi_{p, q}$ are reduced to the ordinary $\sin x, \cos x$ and $\pi$, respectively. This is a reason why these functions and the constant are called generalized trigonometric functions (with parameter $(p, q)$ ) and the generalized $\pi$, respectively.

Drábek and Manásevich [5] introduced the generalized trigonometric functions with two parameters to study an inhomogeneous eigenvalue problem of $p$-Laplacian. They gave a closed form of solutions $(\lambda, u)$ of the eigenvalue problem

$$
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=\lambda|u|^{q-2} u, \quad u(0)=u(L)=0 .
$$

Indeed, for any $n=1,2, \ldots$, there exists a curve of solutions $\left(\lambda_{n, R}, u_{n, R}\right)$ with a parameter $R \in \mathbb{R} \backslash\{0\}$ such that

$$
\begin{align*}
& \lambda_{n, R}=\frac{q}{p^{*}}\left(\frac{n \pi_{p, q}}{L}\right)^{p}|R|^{p-q},  \tag{1.2}\\
& u_{n, R}(x)=R \sin _{p, q}\left(\frac{n \pi_{p, q}}{L} x\right) \tag{1.3}
\end{align*}
$$

(see also [12]). Conversely, there exists no other solution of the eigenvalue problem. Thus, the generalized trigonometric functions play important roles to study problems of the $p$-Laplacian.

It is of interest to know whether the generalized trigonometric functions have multiple-angle formulas unless $p=q=2$. A few multiple-angle formulas seem to be known. Actually, in case $2 p=q=4$, the function $\sin _{p, q} x=\sin _{2,4} x$ coincides with the lemniscate sine function sl $x$, whose inverse function is defined as

$$
\mathrm{sl}^{-1} x:=\int_{0}^{x} \frac{d t}{\sqrt{1-t^{4}}}
$$

Furthermore, $\pi_{2,4}$ is equal to the lemniscate constant $\varpi:=2 \mathrm{sl}^{-1} 1=2.6220 \cdots$. Concerning sl $x$ and $\varpi$, we refer to the reader to $[11$, p. 81], [15] and [16, §22.8]. Since sl $x$ has the multiple-angle formula

$$
\begin{equation*}
\operatorname{sl}(2 x)=\frac{2 \operatorname{sl} x \sqrt{1-\mathrm{sl}^{4} x}}{1+\mathrm{sl}^{4} x}, \quad 0 \leq x \leq \frac{\varpi}{2}, \tag{1.4}
\end{equation*}
$$

we see that

$$
\sin _{2,4}(2 x)=\frac{2 \sin _{2,4} x \cos _{2,4} x}{1+\sin _{2,4}^{4} x}, \quad 0 \leq x \leq \frac{\pi_{2,4}}{2}
$$

Also in case $p^{*}=q=4$, it is possible to show that $\sin _{p, q} x=\sin _{4 / 3,4} x$ can be expressed in terms of the Jacobian elliptic function, whose multiple-angle formula yields

$$
\begin{equation*}
\sin _{4 / 3,4}(2 x)=\frac{2 \sin _{4 / 3,4} x \cos _{4 / 3,4}^{1 / 3} x}{\sqrt{1+4 \sin _{4 / 3,4}^{4} x \cos _{4 / 3,4}^{4 / 3} x}} \quad 0 \leq x<\frac{\pi_{4 / 3,4}}{4} . \tag{1.5}
\end{equation*}
$$

Download Persian Version:
https://daneshyari.com/article/4614192

## Daneshyari.com


[^0]:    मे This work was supported by JSPS KAKENHI Grant Number 24540218.
    E-mail address: shingo@shibaura-it.ac.jp.
    ${ }^{1} 307$ Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan.

