Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Rademacher functions in Morrey spaces $\stackrel{\Leftrightarrow}{\sim}$

Sergei V. Astashkin^{a,b,*}, Lech Maligranda^c

^a Department of Mathematics and Mechanics, Samara State University, Acad. Pavlova 1, 443011
 Samara, Russia
 ^b Samara State Aerospace University (SSAU), Moskovskoye shosse 34, 443086, Samara, Russia

^c Department of Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden

A R T I C L E I N F O

Article history: Received 20 January 2016 Available online 14 July 2016 Submitted by P.G. Lemarie-Rieusset

Keywords: Rademacher functions Morrey spaces Korenblyum–Krein–Levin spaces Marcinkiewicz spaces Complemented subspaces

ABSTRACT

The Rademacher sums are investigated in the Morrey spaces $M_{p,w}$ on [0,1] for $1 \leq p < \infty$ and weight w being a quasi-concave function. They span l_2 space in $M_{p,w}$ if and only if the weight w is smaller than $\log_2^{-1/2} \frac{2}{t}$ on (0,1). Moreover, if $1 the Rademacher subspace <math>\mathcal{R}_{p,w}$ is complemented in $M_{p,w}$ if and only if it is isomorphic to l_2 . However, the Rademacher subspace $\mathcal{R}_{1,w}$ is not complemented in $M_{1,w}$ for any quasi-concave weight w. In the last part of the paper geometric structure of Rademacher subspaces in Morrey spaces $M_{p,w}$ is described. It turns out that for any infinite-dimensional subspace X of $\mathcal{R}_{p,w}$ the following alternative holds: either X is isomorphic to l_2 or X contains a subspace which is isomorphic to c_0 and is complemented in $\mathcal{R}_{p,w}$.

@ 2016 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

The well-known Morrey spaces introduced by Morrey in 1938 [20] in relation to the study of partial differential equations were widely investigated during last decades, including the study of classical operators of harmonic analysis: maximal, singular and potential operators—in various generalizations of these spaces. In the theory of partial differential equations, along with the weighted Lebesgue spaces, Morrey-type spaces also play an important role. They appeared to be quite useful in the study of the local behavior of the solutions of partial differential equations, a priori estimates and other topics.

Let $0 , w be a non-negative non-decreasing function on <math>[0, \infty)$, and Ω a domain in \mathbb{R}^n . The Morrey space $M_{p,w} = M_{p,w}(\Omega)$ is the class of Lebesgue measurable real functions f on Ω such that

 ^{*} Research of the first named author was partially supported by the Ministry of Education and Science of the Russian Federation.
 * Corresponding author.

E-mail addresses: astash@samsu.ru (S.V. Astashkin), lech.maligranda@ltu.se (L. Maligranda).

$$||f||_{M_{p,w}} = \sup_{0 < r < \operatorname{diam}(\Omega), \, x_0 \in \Omega} w(r) \left(\frac{1}{|B_r(x_0)|} \int_{B_r(x_0) \cap \Omega} |f(t)|^p \, dt \right)^{1/p} < \infty, \tag{1}$$

where $B_r(x_0)$ is a ball with the center at x_0 and radius r. It is a quasi-Banach ideal space on Ω . The so-called ideal property means that if $|f| \leq |g|$ a.e. on Ω and $g \in M_{p,w}$, then $f \in M_{p,w}$ and $||f||_{M_{p,w}} \leq ||g||_{M_{p,w}}$. In particular, if w(r) = 1 then $M_{p,w}(\Omega) = L_{\infty}(\Omega)$, if $w(r) = r^{1/p}$ then $M_{p,w}(\Omega) = L_p(\Omega)$ and in the case when $w(r) = r^{1/q}$ with $0 <math>M_{p,w}(\Omega)$ are the classical Morrey spaces, denoted shortly by $M_{p,q}(\Omega)$ (see [14, Part 4.3], [15,23] and [29]). Moreover, as a consequence of the Hölder–Rogers inequality we obtain monotonicity with respect to p, that is,

$$M_{p_1,w}(\Omega) \xrightarrow{1} M_{p_0,w}(\Omega)$$
 if $0 < p_0 \le p_1 < \infty$.

For two quasi-Banach spaces X and Y the symbol $X \xrightarrow{C} Y$ means that the embedding $X \subset Y$ is continuous and $||f||_Y \leq C||f||_X$ for all $f \in X$.

It is easy to see that in the case when $\Omega = [0, 1]$ quasi-norm (1) can be defined as follows

$$||f||_{M_{p,w}} = \sup_{I} w(|I|) \left(\frac{1}{|I|} \int_{I} |f(t)|^p dt\right)^{1/p},$$
(2)

where the supremum is taken over all intervals I in [0, 1]. In what follows |E| is the Lebesgue measure of a set $E \subset \mathbb{R}$.

The main purpose of this paper is the investigation of the behavior of Rademacher sums

$$R_n(t) = \sum_{k=1}^n a_k r_k(t), \ a_k \in \mathbb{R} \text{ for } k = 1, 2, ..., n, \text{ and } n \in \mathbb{N}$$

in general Morrey spaces $M_{p,w}$. Recall that the Rademacher functions on [0,1] are defined by $r_k(t) = \operatorname{sign}(\sin 2^k \pi t), k \in \mathbb{N}, t \in [0,1].$

By $\mathcal{R}_{p,w}$ we denote the subspace spanned by the Rademacher functions r_k , k = 1, 2, ... in $M_{p,w}$.

The most important tool in studying Rademacher sums in the classical L_p -spaces and in general rearrangement invariant spaces is the so-called *Khintchine inequality* (cf. [11, p. 10], [1, p. 133], [16, p. 66] and [4, p. 743]): if $0 , then there exist constants <math>A_p, B_p > 0$ such that for any sequence of real numbers $\{a_k\}_{k=1}^n$ and any $n \in \mathbb{N}$ we have

$$A_p \left(\sum_{k=1}^n |a_k|^2\right)^{1/2} \le \|R_n\|_{L_p[0,1]} \le B_p \left(\sum_{k=1}^n |a_k|^2\right)^{1/2}.$$
(3)

Therefore, for any $1 \le p < \infty$, the Rademacher functions span in L_p an isomorphic copy of l_2 . Also, the subspace $[r_n]$ is complemented in L_p for $1 and is not complemented in <math>L_1$ since no complemented infinite dimensional subspace of L_1 can be reflexive. In L_∞ , the Rademacher functions span an isometric copy of l_1 , which is uncomplemented.

The only non-trivial estimate for Rademacher sums in a general rearrangement invariant (r.i.) space X on [0, 1] is the inequality

$$||R_n||_X \le C \left(\sum_{k=1}^n |a_k|^2\right)^{1/2},\tag{4}$$

Download English Version:

https://daneshyari.com/en/article/4614198

Download Persian Version:

https://daneshyari.com/article/4614198

Daneshyari.com