Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Comparison theorems for conjoined bases of linear Hamiltonian differential systems and the comparative index

Julia Elyseeva

Department of Applied Mathematics, Moscow State University of Technology, Vadkovskii per. 3a, 101472 Moscow, Russia

ARTICLE INFO

Article history: Received 24 January 2016 Available online 21 July 2016 Submitted by Y. Huang

Keywords: Linear Hamiltonian differential systems Relative oscillation theory Sturmian comparison theory Comparative index

ABSTRACT

In this paper we present comparison results for focal points of conjoined bases Y(t), $\hat{Y}(t)$ of two linear Hamiltonian differential systems under the majorant condition $\mathcal{H}(t) - \hat{\mathcal{H}}(t) \geq 0$ for their Hamiltonians $\mathcal{H}(t)$, $\hat{\mathcal{H}}(t)$. Both systems are considered without controllability (or normality) assumptions and under the Legendre condition for $\hat{\mathcal{H}}(t)$. The main result of the paper connects the difference between the number of proper focal points of Y(t), $\hat{Y}(t)$ with the number of proper focal points of $\hat{Z}^{-1}(t)Y(t)$, where $\hat{Z}(t)$ is a symplectic fundamental solution matrix of the Hamiltonian system associated with $\hat{\mathcal{H}}(t)$. Focal points of this transformed basis coincide with focal points of the matrix Wronskian of Y(t), $\hat{Y}(t)$. The main tool of the paper is the comparative index theory for discrete symplectic systems generalized to the continuous case.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Oscillation theory of self-adjoint linear differential equations or systems is a classical research topic [16, 23]. In this paper, we contribute to this theory by considering the linear Hamiltonian systems

$$y'(t) = J\mathcal{H}(t)y(t), \ \mathcal{H}(t) = \begin{bmatrix} -C(t) & A^T(t) \\ A(t) & B(t) \end{bmatrix}, \ \mathcal{H}(t) = \mathcal{H}^T(t), \ J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix},$$
(1.1)

and

$$\hat{y}'(t) = J\hat{\mathcal{H}}(t)\hat{y}(t), \ \hat{\mathcal{H}}(t) = \begin{bmatrix} -\hat{C}(t) & \hat{A}^T(t) \\ \hat{A}(t) & \hat{B}(t) \end{bmatrix}, \ \hat{\mathcal{H}}(t) = \hat{\mathcal{H}}^T(t), \ t \in [a, b]$$
(1.2)

with the piecewise continuous blocks A(t), B(t), C(t), $\hat{A}(t)$, $\hat{B}(t)$, $\hat{C}(t)$: $[a, b] \to \mathbb{R}^{n \times n}$ under the majorant condition

 $\label{eq:http://dx.doi.org/10.1016/j.jmaa.2016.07.020} to 0022-247 X/ \ensuremath{\odot}\ 2016$ Elsevier Inc. All rights reserved.

E-mail address: elyseeva@mtu-net.ru.

$$\mathcal{H}(t) - \hat{\mathcal{H}}(t) \ge 0, \tag{1.3}$$

where $A \ge 0$ means that the symmetric matrix A is nonnegative definite, and I, 0 denote the identity and zero matrices of appropriate dimensions. System (1.2) is considered under the so-called Legendre condition

$$\hat{B}(t) \ge 0, t \in [a, b],$$
(1.4)

then (1.4), (1.3) imply that the Legendre condition holds for (1.1) as well, i.e. $B(t) \ge 0, t \in [a, b]$.

In this paper, we introduce into the consideration a transformed system associated with (1.1), (1.2). Recall that any system in form (1.1) possesses $2n \times n$ matrix solutions $Y(t) = {X(t) \choose U(t)}$ (the so-called *conjoined bases*, see [16]) such that

$$X^{T}(t)U(t) = U^{T}(t)X(t), \quad \operatorname{rank}Y(t) = n$$
(1.5)

and symplectic fundamental solution matrices, i.e. $Z(t) \in \mathbb{R}^{2n \times 2n}$ such that $Z(t)^T J Z(t) = J$. Let $\hat{Z}(t) \in C_p^1$ (i.e., $\hat{Z}(t)$ is continuous with piecewise continuous $\hat{Z}'(t)$) be a symplectic fundamental matrix of system (1.2) and $Y(t) \in C_p^1$ be a conjoined basis of (1.1), then the matrix $\tilde{Y}(t) = \hat{Z}^{-1}(t)Y(t) \in C_p^1$ is the conjoined basis of the transformed Hamiltonian system [4]

$$\tilde{y}'(t) = J\tilde{\mathcal{H}}(t)\tilde{y}(t), \quad \tilde{\mathcal{H}}(t) = \hat{Z}^T(t)(\mathcal{H}(t) - \hat{\mathcal{H}}(t))\hat{Z}(t) = \tilde{\mathcal{H}}^T(t).$$
(1.6)

By majorant condition (1.3), the Hamiltonian $\tilde{\mathcal{H}}(t)$ of (1.6) is nonnegative definite, i.e. $\tilde{\mathcal{H}}(t) \geq 0$.

Note also that the upper block $\tilde{X}(t)$ of $\tilde{Y}(t)$ can be presented in terms of the Wronskian of the conjoined bases Y(t) and $\hat{Y}(t) = \hat{Z}(t)[0\ I]^T$, i.e. $\tilde{X}(t) = -\hat{Y}^T(t)JY(t)$. From this point of view the main result of this paper is related to the *renormalized* version of the oscillation theory for differential Hamiltonian systems. For the second order Sturm–Liouville differential equations (which are the special case of (1.1)) the renormalized and more general *relative* oscillation theory is established in [10,14].

In this paper, we are concerned with comparison theorems for systems (1.1), (1.2) incorporating oscillation behavior of system (1.6). In the classical theory, such as in [11], systems (1.1), (1.2) are studied under controllability (or normality) assumption, see [11, Section 4.1]. Controllability means that the solutions $y(t) = \binom{x(t)}{u(t)}$ of (1.1) are not "degenerate" in the first component, that is, whenever x(t) = 0 on a subinterval of [a, b], then also u(t) = 0 in this subinterval. By [11, Theorem 4.1.3], condition $B(t) \ge 0$ and the controllability assumption yield that the focal points of conjoined bases $Y(t) = \binom{X(t)}{U(t)}$ of system (1.1), i.e., the points $t_0 \in [a, b]$ at which $X(t_0)$ is singular, are isolated. The multiplicity of such a focal point is then the dimension of the kernel of $X(t_0)$, i.e., def $X(t_0)$. The most general comparison result [5, Proposition 1], [11, Theorem 7.3.1] presents estimates for the difference between the number of focal points of conjoined bases Y(t) and $\hat{Y}(t) = \binom{\hat{X}(t)}{\hat{U}(t)}$ of (1.1) and (1.2) in (a, b) in terms of $\operatorname{ind}(Q - \hat{Q})(t\pm)$, t = a, b, where $Q(t) = U(t)X^{-1}(t)$, $\hat{Q}(t) = \hat{U}(t)\hat{X}^{-1}(t)$ and *ind* denotes the index, i.e. the number of negative eigenvalues. Note that [11, Theorem 7.3.1] covers classical results concerning inequalities for solutions of the Riccati equations [15] associated with (1.1), (1.2).

In [12] and followed by [22], the concept of possibly "abnormal" linear Hamiltonian systems was introduced. Based on the results of [12, Theorem 3] saying that $B(t) \ge 0$ implies a piecewise constant kernel of X(t) on [a, b], a new notion of *proper focal points* was given in [22]. First Sturmian-type results for differential Hamiltonian systems without normality and their applications are presented in [2,17–19].

The main result of this paper (Theorem 2.2) connects the multiplicities of proper focal points of conjoined bases of (1.1), (1.2), and (1.6) for the abnormal case replacing the quantities $\operatorname{ind}(\hat{Q} - Q)(t\pm)$, t = a, b in [11, Theorem 7.3.1] by the so-called *comparative index* for Y(t), $\hat{Y}(t)$ at the endpoints t = a and t = b. This comparative index notion [6,7] was introduced and elaborated for discrete symplectic systems [1] which Download English Version:

https://daneshyari.com/en/article/4614205

Download Persian Version:

https://daneshyari.com/article/4614205

Daneshyari.com