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A second-order learning algorithm based on differential geometry is used to 
numerically solve the linear matrix equation Q = x +

∑m
i=1 A

T
i xAi −

∑n
i=1 B

T
i xBi. 

An extended Hamiltonian algorithm is proposed based on the manifold of symmetric 
positive definite matrices. The algorithm is compared with traditional coupled fixed-
point algorithm. Numerical experiments illustrate that the convergence speed of the 
provided algorithm is faster than that of the coupled fixed-point algorithm.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The linear matrix equation is presented as follows:

Q = x +
m∑
i=1

AT
i xAi −

m∑
i=1

BT
i xBi, (1)

where Q is an n × n positive definite matrix and Ai, Bi are n × n arbitrary matrices. AT
i and BT

i denote 
the conjugate transpose of the matrices Ai and Bi, respectively. Equation (1) is the general case of the 
generalized Lyapunov equation as follows:

MY S∗ + SYM∗ +
t∑

k=1

NkY N∗
k + CC∗ = 0. (2)
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The positive definite solution of Equation (2) is the controllability Gramian of the bilinear control system 
(see [4,5,22] for more details)

Mẋ(t) = Sx(t) +
t∑

k=1

Nkx(t)uk(t) + Cu(t). (3)

Special cases of Equation (1) have been previously investigated. Several numerical methods, such as the 
Bartels–Stewart, Schur and QR decomposition methods, and Hessenberg–Schur, have been proposed in [3]
and [12] to solve the following well-known Lyapunov equation Q = x + ATxA. Some sufficient conditions 
for the existence of a unique symmetric positive definite solution of equations Q = x +

∑m
i=1 A

T
i xAi and 

Q = x −
∑m

i=1 B
T
i xBi are given in [17,18], according to the Kronecker product and the fixed point theorem 

in partially ordered sets. Duan used matrix differentiation to obtain a precise perturbation bound for the 
positive definite solution for Equation (1) [5]. Berzig provided a sufficient condition for the existence of a 
unique positive definite solution, and an iterative algorithm using the Bhaskar–Lakshmikantham coupled 
fixed-point theorem (CFPA) was proposed [2].

The solution of Equation (1) is a symmetric positive definite matrix. Moreover, the set of all the sym-
metric positive definite matrices can be considered to be manifold. Thus, evaluating the solution problem is 
facilitated using the geometric structures on this manifold [6–8]. Fiori developed the extended Hamiltonian 
algorithm (EHA), which is a second-order learning algorithm on manifold [11]. The inclusion of a momen-
tum term remarkably enhances the rate of convergence [16,19]. Thus, the EHA is proposed to numerically 
solve Equation (1), which is based on the geometric structures of the Riemannian manifold.

Section 2 describes some fundamental concepts of the manifold discussed in the study. Section 3 introduces 
the EHA for Equation (1) on the manifold. Section 4 compares and demonstrates the behavior of the EHA 
with the CFPA using simulations.

2. Preliminaries

M(n) is a set of n × n real matrices and GL(n) is its subset, which contains only non-singular matrices. 
GL(n) is a Lie group, that is, a group which is also a differentiable manifold and on which the operations 
of group multiplication and the inverse are smooth. The tangent space at the identity of GL(n) is called 
the corresponding Lie algebra. This space comprises all linear transformations, namely M(n). Additionally, 
x > 0 implies that x is a symmetric positive definite matrix. For a different notation x − y > 0, x > y. 
The manifold consisting of all the symmetric positive definite matrices is defined as follows: S+(n) = {x ∈
R

n×n|xT = x, x > 0}. The tangent space at point x ∈ S
+(n) is given by TxS

+(n) = {V ∈ R
n×n|vT = v}. 

The manifold S+(n) is not a Lie subgroup of GL(n), but it is a submanifold of GL(n). Different metrics on 
the manifold S+(n) can be defined, such that different geometric structures are established on this manifold. 
These geometric structures, which are used in the following sections, are briefly introduced in this section. 
Their detailed description can be found in [1,9,14,15,20].

2.1. Tangent space on manifold S+(n)

The exponential map of a matrix v ∈ M(n) is usually given, by the following convergent series:

exp(v) =
∞∑

m=0

vm

m! . (4)

The inverse map, that is, the logarithmic map is defined as follows:
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