Heat content estimates over sets of finite perimeter

Luis Acuña Valverde
Department of Mathematics, Universidad de Costa Rica, San José, Costa Rica

A R T I C L E I N F O

Article history:

Received 14 February 2016
Available online 7 April 2016
Submitted by M. Carro

Keywords:

Covariance function
Heat content
Functions of bounded variation
Stable processes
Sets of finite perimeter

Abstract

This paper studies by means of standard analytic tools the small time behavior of the heat content over a bounded Lebesgue measurable set of finite perimeter by working with the set covariance function and by imposing conditions on the heat kernels. Applications concerning the heat kernels of rotational invariant α-stable processes are given.

© 2016 Published by Elsevier Inc.

1. Introduction

Let I be a set of indices and $d \geq 2$ an integer. Consider a set of non-negative functions

$$
\left\{p_{t}^{(\alpha)}(\cdot): \mathbb{R}^{d} \rightarrow[0, \infty], \alpha \in I, t \geq 0\right\}
$$

where each $p_{t}^{(\alpha)}(\cdot)$ will be called heat kernel. We shall assume that these heat kernels satisfy the following properties.
(i) For each $t>0, p_{t}^{(\alpha)}(x)$ is radial. That is, $p_{t}^{(\alpha)}(x)=p_{t}^{(\alpha)}(|x|) \geq 0, x \in \mathbb{R}^{d}$. Furthermore, we assume $p_{t}^{(\alpha)}(\cdot) \in L^{1}\left(\mathbb{R}^{d}\right)$.
(ii) Scaling property: for each integer $d \geq 2$ and $\alpha \in I$, there exist $\beta=\beta(d, \alpha) \in \mathbb{R}$ and $\gamma=\gamma(d, \alpha)>0$ such that

$$
\begin{equation*}
p_{t}^{(\alpha)}(x)=t^{\beta} p_{1}^{(\alpha)}\left(t^{-\gamma} x\right) \tag{1.1}
\end{equation*}
$$

As a consequence of the aforementioned properties, we obtain

[^0]\[

$$
\begin{align*}
\left\|p_{t}^{(\alpha)}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} & =t^{\beta+d \gamma}\left\|p_{1}^{(\alpha)}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}, \tag{1.2}\\
p_{t}^{(\alpha)}(x) & =p_{t}^{(\alpha)}\left(|x| e_{d}\right),
\end{align*}
$$
\]

where e_{d} stands for the vector $(0,0, \ldots, 0,1) \in \mathbb{R}^{d}$.
Before continuing, we provide some useful notations. Throughout the paper, $\mathcal{L}\left(\mathbb{R}^{d}\right)$ will denote the set of all the Lebesgue measurable subsets of \mathbb{R}^{d}. For a bounded set $\Omega \in \mathcal{L}\left(\mathbb{R}^{d}\right)$ with non-empty boundary $\partial \Omega$, we set

$$
\begin{aligned}
|\Omega| & =\text { volume of } \Omega, \\
\mathcal{H}^{d-1}(\partial \Omega) & =(d-1) \text {-Hausdorff measure of the boundary of } \Omega .
\end{aligned}
$$

Henceforth, $B_{r}(x)$ will stand for the ball centered at $x \in \mathbb{R}^{d}$ with radius r and for simplicity B will represent the unit ball centered at zero. Also S^{d-1} will denote the boundary of the unit ball B. Moreover, the volume and surface area of the unit ball in \mathbb{R}^{d} will be denoted by w_{d} and A_{d}, respectively. That is,

$$
\begin{align*}
w_{d} & =\frac{\pi^{\frac{d}{2}}}{\Gamma\left(1+\frac{d}{2}\right)}, \tag{1.3}\\
A_{d} & =d w_{d} .
\end{align*}
$$

In addition, if $g: \Omega \subseteq \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a Lipschitz function, we denote

$$
\operatorname{Lip}(g)=\sup \left\{\frac{|g(y)-g(x)|}{|y-x|}: x, y \in \Omega, x \neq y\right\} .
$$

Let $\Omega \in \mathcal{L}\left(\mathbb{R}^{d}\right)$ be a bounded set. The purpose of the paper is to investigate the behavior as $t \rightarrow 0+$ of the following function

$$
\begin{equation*}
\mathbb{H}_{\Omega}^{(\alpha)}(t)=\int_{\Omega} d x \int_{\Omega} d y p_{t}^{(\alpha)}(x-y) \tag{1.4}
\end{equation*}
$$

which will be called the heat content of Ω in \mathbb{R}^{d} by imposing conditions over the heat kernel $p_{t}^{(\alpha)}(\cdot)$ and the underlying set Ω. We remark that $\mathbb{H}_{\Omega}^{(\alpha)}(t)$ is finite for all $t>0$ due to the assumption $p_{t}^{(\alpha)}(\cdot) \in L^{1}\left(\mathbb{R}^{d}\right)$ and the inequality

$$
0 \leq \mathbb{H}_{\Omega}^{(\alpha)}(t) \leq \int_{\Omega} d x \int_{\mathbb{R}^{d}} d y p_{t}^{(\alpha)}(x-y)=|\Omega|\left\|p_{t}^{(\alpha)}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}
$$

The function $\mathbb{H}_{\Omega}^{(\alpha)}(t)$ turns out to provide information about the geometry of the set Ω as long as regularity conditions over Ω are assumed. For instance, in [20], Theorem 2.4 is proved by taking $I=\{2\}$ and considering the Gaussian kernel

$$
\begin{equation*}
p_{t}^{(2)}(x)=(4 \pi t)^{-\frac{d}{2}} \exp \left(-\frac{|x|^{2}}{4 t}\right) \tag{1.5}
\end{equation*}
$$

that

$$
\lim _{t \rightarrow 0+} \frac{|\Omega|-\mathbb{H}_{\Omega}^{(2)}(t)}{\sqrt{t}}=\frac{1}{\sqrt{\pi}} \mathcal{H}^{d-1}(\partial \Omega),
$$

https://daneshyari.com/en/article/4614242

Download Persian Version:
https://daneshyari.com/article/4614242

Daneshyari.com

[^0]: E-mail addresses: luis.acunavalverde@ucr.ac.cr, guillemp22@yahoo.com.
 http://dx.doi.org/10.1016/j.jmaa.2016.03.087
 0022-247X/© 2016 Published by Elsevier Inc.

