

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy potential

Cheng-Jun He a, Chang-Lin Xiang b,*,1

ARTICLE INFO

Article history: Received 11 August 2015 Available online 8 April 2016 Submitted by H. Liu

Keywords: Quasilinear elliptic equations Hardy's inequality Asymptotic behaviors Comparison principle

ABSTRACT

Optimal estimates on asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations

$$-\Delta_{p} u - \frac{\mu}{|x|^{p}} |u|^{p-2} u + m|u|^{p-2} u = f(u), \qquad x \in \mathbb{R}^{N},$$

where 1 0 and f is a continuous function. © 2016 Elsevier Inc. All rights reserved.

Contents

1.	Introd	uction and main results	12
	1.1.	Asymptotic behaviors of positive radial solutions	13
	1.2.	Asymptotic behaviors of general weak solutions	15
2.	Proofs	s of Theorem 1.1 and Theorem 1.2	17
	2.1.	Proof of Theorem 1.1	18
	2.2.	Proof of Theorem 1.2	21
3.	Proof	of Theorem 1.3	27
4.	Proof	of Theorem 1.6	29
Acknowledgments		34	
Refere	ences .	2	34

^a Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box 71010, Wuhan, 430071, PR China

^b University of Jyvaskyla, Department of Mathematics and Statistics, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland

^{*} Corresponding author.

E-mail addresses: cjhe@wipm.ac.cn (C.-J. He), Xiang_math@126.com (C.-L. Xiang).

 $^{^{1}}$ The second named author is financially supported by the Academy of Finland, project 259224.

1. Introduction and main results

In this note, we study asymptotic behaviors of weak solutions to the following quasilinear elliptic equations

$$-\Delta_p u - \frac{\mu}{|x|^p} |u|^{p-2} u + m|u|^{p-2} u = f(u), \qquad x \in \mathbb{R}^N,$$
(1.1)

where $1 , <math>0 \le \mu < \bar{\mu} = ((N - p)/p)^p$, m > 0,

$$\Delta_p u = \sum_{i=1}^N \partial_{x_i} (|\nabla u|^{p-2} \partial_{x_i} u), \qquad \nabla u = (\partial_{x_1} u, \dots, \partial_{x_N} u),$$

is the p-Laplacian operator and $f: \mathbb{R} \to \mathbb{R}$ is a continuous function denoted by $f \in C(\mathbb{R})$. In addition, we assume throughout the paper that f satisfies that

$$\limsup_{t \to 0} \frac{|f(t)|}{|t|^{q-1}} \le A < \infty \tag{1.2}$$

for some q > p, and that

$$\limsup_{|t| \to \infty} \frac{|f(t)|}{|t|^{p^* - 1}} \le A < \infty \tag{1.3}$$

with $p^* = Np/(N-p)$, where A > 0 is a constant.

Equation (1.1) is the Euler-Lagrange equation of the energy functional $E: W^{1,p}(\mathbb{R}^N) \to \mathbb{R}$ defined by

$$E(u) = \frac{1}{p} \int\limits_{\mathbb{D}^N} \left(|\nabla u|^p - \frac{\mu}{|x|^p} |u|^p + m|u|^p \right) - \int\limits_{\mathbb{D}^N} F(u), \qquad u \in W^{1,p}(\mathbb{R}^N),$$

where F is given by $F(t) = \int_0^t f$ for $t \in \mathbb{R}$ and $W^{1,p}(\mathbb{R}^N)$ is the Banach space of weakly differentiable functions $u : \mathbb{R}^N \to \mathbb{R}$ such that the norm

$$||u||_{1,p,\mathbb{R}^N} = \left(\int\limits_{\mathbb{R}^N} |u|^p\right)^{\frac{1}{p}} + \left(\int\limits_{\mathbb{R}^N} |\nabla u|^p\right)^{\frac{1}{p}}$$

is finite.

All of the integrals in energy functional E are well defined, due to the Sobolev inequality

$$C\left(\int\limits_{\mathbb{R}^N}|\varphi|^{p^*}\right)^{\frac{p}{p^*}}\leq \int\limits_{\mathbb{R}^N}|\nabla\varphi|^p, \qquad \forall\, \varphi\in W^{1,p}(\mathbb{R}^N),$$

where C = C(N, p) > 0, and due to the Hardy inequality (see [3, Lemma 1.1])

$$\left(\frac{N-p}{p}\right)^p \int_{\mathbb{R}^N} \frac{|\varphi|^p}{|x|^p} \le \int_{\mathbb{R}^N} |\nabla \varphi|^p, \qquad \forall \, \varphi \in W^{1,p}(\mathbb{R}^N), \tag{1.4}$$

and due to the assumptions (1.2) and (1.3), which imply that

$$|F(t)| \le C|t|^p + C|t|^{p^*}, \quad \forall t \in \mathbb{R},$$

for some positive constant C.

Download English Version:

https://daneshyari.com/en/article/4614248

Download Persian Version:

https://daneshyari.com/article/4614248

<u>Daneshyari.com</u>