Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

CrossMark

Algebraic structures in the sets of surjective functions

Artur Bartoszewicz^a, Marek Bienias^{a,*}, Szymon Głąb^a, Tomasz Natkaniec^b

^a Institute of Mathematics, Łódź University of Technology, Wólczańska 215, 93-005 Łódź, Poland
^b Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

ARTICLE INFO

Article history: Received 9 October 2015 Available online 12 April 2016 Submitted by B. Bongiorno

Keywords: Algebrability Strong algebrability Everywhere surjective function Strongly everywhere surjective function Sierpiński–Zygmund function Jones function

ABSTRACT

In the paper we construct several algebraic structures (vector spaces, algebras and free algebras) inside sets of different types of surjective functions. Among many results we prove that: the set of everywhere but not strongly everywhere surjective complex functions is strongly c-algebrable and that its 2^{c} -algebrability is consistent with ZFC; under CH the set of everywhere surjective complex functions which are Sierpiński–Zygmund in the sense of continuous but not Borel functions is strongly c-algebrable; the set of Jones complex functions is strongly 2^{c} -algebrable.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

For some time now, many mathematicians have been looking at the largeness of some sets by constructing algebraic structures inside them. This approach is called *algebrability*. A comprehensive description of this concept as well as numerous examples and some general techniques can be found in the surveys [11,15].

Following R. Aron, A. Bartoszewicz, S. Głąb, V. Gurariy, D. Pérez-García, J.B. Seoane-Sepúlveda, [4–6, 12] let us recall the following notions:

Definition 1.1. Let κ be a cardinal number.

- (1) Let \mathcal{L} be a vector space and $A \subseteq \mathcal{L}$. We say that A is κ -lineable if $A \cup \{0\}$ contains a κ -dimensional subspace of \mathcal{L} ;
- (2) Let \mathcal{L} be a commutative algebra and $A \subseteq \mathcal{L}$. We say that A is κ -algebrable if $A \cup \{0\}$ contains a κ -generated subalgebra B of \mathcal{L} (i.e. the minimal cardinality of the system of generators of B is κ).

* Corresponding author.

http://dx.doi.org/10.1016/j.jmaa.2016.04.013 0022-247X/© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: artur.bartoszewicz@p.lodz.pl (A. Bartoszewicz), marek.bienias@p.lodz.pl (M. Bienias), szymon.glab@p.lodz.pl (S. Głąb), tomasz.natkaniec@mat.ug.edu.pl (T. Natkaniec).

(3) Let \mathcal{L} be a commutative algebra and $A \subseteq \mathcal{L}$. We say that A is *strongly* κ -algebrable if $A \cup \{0\}$ contains a κ -generated subalgebra B that is isomorphic to a free algebra.

Fact 1.2. Observe that the set $X = \{x_{\alpha} : \alpha < \kappa\}$ is the set of free generators of some free algebra if and only if the set \tilde{X} of elements of the form $x_{\alpha_1}^{k_1} x_{\alpha_2}^{k_2} \cdots x_{\alpha_n}^{k_n}$ is linearly independent; equivalently for any $k \in \mathbb{N}$, any nonzero polynomial P in k variables without a constant term and any distinct $x_{\alpha_1}, \ldots, x_{\alpha_k} \in X$, we have that $P(x_{\alpha_1}, \ldots, x_{\alpha_k})$ is nonzero.

This paper is devoted to the investigation of algebrability properties of several classes of surjective functions. In the sequel we take into our considerations the following ones: everywhere surjective type functions (section 3), Sierpiński-Zygmund functions (section 4) and Jones functions (section 5). In the paper the symbol K stands for the set \mathbb{R} or \mathbb{C} . We use a standard set theoretical notion. In particular, we identify ordinal number α with the set of all ordinals $\beta < \alpha$. Cardinal numbers are those ordinals α which are not equipotent with any $\beta < \alpha$. A cardinal number κ is called regular, if it cannot be decomposed into less than κ sets of cardinality less than κ . Moreover, to indicate the difference between the sets of natural numbers with or without 0 we use standard notation, i.e. $\mathbb{N} = \{1, 2, 3, \ldots\}$ and $\omega = \{0, 1, 2, \ldots\}$ (it should be mentioned here that ω is also identified with the first infinite cardinal).

2. The general method

We start with the simple, but in the view of further results, useful observation. It is a foundation of a powerful method whose particular case is the so-called *exponential like function method*.

Theorem 2.1. Let κ be a cardinal number, $\mathcal{A} \subseteq \mathbb{K}^{\mathbb{K}}$ be a κ -generated algebra (resp. free algebra, vector space) and $\mathcal{G} \subseteq \mathbb{K}^{\mathbb{K}}$. Assume that there exists a function $F : \mathbb{K} \to \mathbb{K}$ such that $f \circ F \in \mathcal{G} \setminus \{0\}$ for every $f \in \mathcal{A} \setminus \{0\}$. Then \mathcal{G} is κ -algebrable (resp. strongly κ -algebrable, κ -lineable).

Proof. Observe that a function $h : \mathcal{A} \to \mathcal{G}$ defined by $h(f) = f \circ F$ is a morphism of structures. Hence, if \mathcal{A} is κ -generated algebra (resp. free algebra or vector space), then $h[\mathcal{A}]$ has the same property. \Box

It turns out that algebra \mathcal{A} , which is very useful in several cases, is the *c*-generated free algebra of the so-called exponential like functions. In 2013, M. Balcerzak et al. (see [7]) introduced the following notion.

Definition 2.2. (See [7].) We say that a function $f : \mathbb{R} \to \mathbb{R}$ is *exponential like* (of rank $m \in \mathbb{N}$), whenever for $x \in \mathbb{R}$

$$f(x) = \sum_{i=1}^{m} a_i e^{\beta_i x},$$

for some distinct nonzero real numbers β_1, \ldots, β_m and some nonzero real numbers a_1, \ldots, a_m (let us denote the set of all exponential like functions $f : \mathbb{R} \to \mathbb{R}$ by $\mathcal{EXP}(\mathbb{R})$).

In this setting, actually using the fact that $\mathcal{EXP}(\mathbb{R})$ is strongly \mathfrak{c} -algebrable, they proved the following.

Theorem 2.3. (See [7].) Let X be a nonempty set and $\mathcal{G} \subseteq \mathbb{R}^X$. Assume that there exists a function $F : X \to \mathbb{R}$ such that $f \circ F \in \mathcal{G} \setminus \{0\}$ for every $f \in \mathcal{EXP}(\mathbb{R})$. Then \mathcal{G} is strongly \mathfrak{c} -algebrable.

It is a simple observation, looking at the proof of Theorem 2.3, that this result is a particular case of Theorem 2.1. Many applications of Theorem 2.3 can be found in the paper by A. Bartoszewicz et al. [9].

Download English Version:

https://daneshyari.com/en/article/4614271

Download Persian Version:

https://daneshyari.com/article/4614271

Daneshyari.com