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Let P2,ac be the set of Borel probabilities on Rd with finite second moment and 
absolutely continuous with respect to Lebesgue measure. We consider the prob-
lem of finding the barycenter (or Fréchet mean) of a finite set of probabilities 
ν1, . . . , νk ∈ P2,ac with respect to the L2-Wasserstein metric. For this task we 
introduce an operator on P2,ac related to the optimal transport maps pushing for-
ward any μ ∈ P2,ac to ν1, . . . , νk. Under very general conditions we prove that the 
barycenter must be a fixed point for this operator and introduce an iterative proce-
dure which consistently approximates the barycenter. The procedure allows effective 
computation of barycenters in any location-scatter family, including the Gaussian 
case. In such cases the barycenter must belong to the family, thus it is character-
ized by its mean and covariance matrix. While its mean is just the weighted mean 
of the means of the probabilities, the covariance matrix is characterized in terms 
of their covariance matrices Σ1, . . . , Σk through a nonlinear matrix equation. The 
performance of the iterative procedure in this case is illustrated through numerical 
simulations, which show fast convergence towards the barycenter.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider a set {x1, . . . , xk} of elements in a certain space and associated weights, λ1, . . . , λk, 
satisfying λi > 0, 

∑n
i=1 λi = 1, interpretable as a quantification of the relative importance or presence of 

these elements. The suitable choice of an element in the space to represent that set is an old problem present 
in many different settings. The weighted mean being the best known choice, it enjoys many nice properties 
that allow us to consider it a very good representation of elements in an Euclidean space. Yet, it can be 
highly undesirable for representing shaped objects like functions or matrices with some particular structure. 
The Fréchet mean or barycenter is a natural extension arising from the consideration of minimum dispersion 
character of the mean, when the space has a metric structure which, in some cases, may overcome these 
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difficulties. Like the mean, if d is a distance in the reference space E, a barycenter x̄ is determined by the 
relation

k∑
i=1

λid
2(xi, x̄) = min

{
k∑

i=1
λid

2(xi, y), y ∈ E

}
.

In the last years Wasserstein spaces have focused the interest of researchers from very different fields 
(see, e.g., the monographs [4,27] or [28]), leading in particular to the natural consideration of Wasserstein 
barycenters beginning with [1]. This appealing concept shows a high potential for application, already 
considered in Artificial Intelligence or in Statistics (see, e.g., [16,5,10,20,7] or [3]). The main drawback being 
the difficulties for its effective computation, several of these papers [16,5,10] are mainly devoted to this hard 
goal. In fact, the (L2-)Wasserstein distance between probabilities, which is the framework of this paper, is 
easily characterized and computed for probabilities on the real line, but there is not a similar, simple closed 
expression for its computation in higher dimension. A notable exception arises from Gelbrich’s bound and 
some extensions (see [19,13,15]) that allow the computation of the distances between normal distributions or 
between probabilities in some parametric (location-scatter) families. For multivariate Gaussian distributions 
in particular, in [1], the barycenter has been characterized in terms of a fixed point equation involving the 
covariance matrices in a nonlinear way (see (6) below) but, to the best of our knowledge, feasible consistent 
algorithms to approximate the solution have not been proposed yet.

The approach in [1] for the characterization of the barycenter in the Gaussian setting resorted to duality 
arguments and to Brouwer’s fixed-point theorem. Here we take a different approach which is not constrained 
to the Gaussian setup. We introduce an operator associated to the transformation of a probability measure 
through weighted averages of optimal transportations to the set {νi}ki=1 of target distributions. This operator 
is the real core of our approach. We show (see Theorem 3.1 and Proposition 3.3 below) that, in very general 
situations, barycenters must be fixed points of the above mentioned operator. We also show (Theorem 3.6) 
how this operator can be used to define a consistent iterative scheme for the approximate computation of 
barycenters. Of course, the practical usefulness of the iteration will depend on the difficulties arising from the 
computation of the optimal transportation maps involved in the iteration. The case of Gaussian probabilities 
is a particularly convenient setup for our iteration. We provide a self-contained approach to barycenters in 
this Gaussian framework based on first principles of optimal transportation and some elementary matrix 
analysis. This leads also to the characterization (6) and, furthermore, it yields sharp bounds on the covariance 
matrix of the barycenter which are of independent interest. We prove (Theorem 4.2) that our iteration 
provides a consistent approximation to barycenters in this Gaussian setup. We also notice that all the results 
given for the Gaussian family are automatically extended to location-scatter families (see Definition 2.1
below). Finally, we illustrate the performance of the iteration through numerical simulations. These show 
fast convergence towards the barycenter, even in problems involving a large number of distributions or 
high-dimensional spaces.

The remaining sections of this paper are organized as follows. Section 2 gives a succinct account of some 
basic facts about optimal transportation and Wasserstein metrics and introduces the barycenter problem 
with respect to these metrics. The section contains pointers to the most relevant references on the topic. 
Section 3 contains the core of the paper, introducing the operator G in (7), showing the connection between 
barycenters and fixed points of G and presenting the iterative scheme for approximate computation of 
barycenters. The Gaussian and location-scatter cases are analyzed in Section 4, while Section 5 presents 
some numerical simulations. We conclude this Introduction with some words on notation. Throughout the 
paper our space of reference is the Euclidean space Rd. With ‖x‖ we denote the usual norm and with x ·y the 
inner product. For a matrix A, At will denote the corresponding transpose matrix, det(A) the determinant 
and Tr(A) the trace. Id will be indistinctly used as the identity map and as the d × d identity matrix, while 
M+

d×d will denote the set of d × d (symmetric) positive definite matrices. The space where we consider 
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