

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Recovering time-dependent inclusion in heat-conductive bodies using a dynamical probe method

O. Poisson

Aix Marseille Université, I2M, UMR CNRS 6632, France

ARTICLE INFO

Article history: Received 14 August 2015 Available online 13 April 2016 Submitted by H.-M. Yin

Keywords: Dirichlet-to-Neumann map Heat probing Inverse problem

ABSTRACT

We consider an inverse boundary value problem for the heat equation: $\partial_t v = \operatorname{div}_x \left(\gamma \nabla_x v \right)$ in $(0,T) \times \Omega$, where Ω is a bounded domain of \mathbb{R}^3 , and the heat conductivity $\gamma(t,x)$ admits a surface of discontinuity, which depends on time without any spatial smoothness. The reconstruction and, implicitly, the uniqueness of the moving inclusion based on the knowledge of the Dirichlet-to-Neumann operator is achieved using a dynamical probe method according to the construction of fundamental solutions of the elliptic operator $-\Delta + \tau^2$, where τ is a large real parameter, and a pair of inequalities relate the data and integrals on the inclusion, in a similar manner to the elliptic case. These solutions depend on the pole of the fundamental solution but also on the large parameter τ , which allows the method to be applied in a very general situation.

 $\ensuremath{{}^{\odot}}$ 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Inverse heat conductivity problem

Let Ω be a bounded domain in \mathbb{R}^3 with Lipschitz boundary $\Gamma = \partial \Omega$, and consider the following initial boundary value problem

$$\begin{cases}
\partial_t v = \operatorname{div}_x (\gamma \nabla_x v) & \text{in } \Omega_T = (0, T) \times \Omega, \\
v = f & \text{on } \Gamma_T = (0, T) \times \Gamma, \\
v|_{t=0} = v_0 & \text{on } \Omega,
\end{cases}$$
(1)

where $\gamma = \gamma(t, x) \in L^{\infty}(\Omega_T) \cap C([0, T]; L^1(\Omega))$, with the following properties.

(C- γ) A positive function $(t,x) \mapsto k(t,x)$ and for all $t \in [0,T]$, a non-empty open set $D(t) \subset \Omega$ exist such that:

E-mail address: olivier.poisson@univ-amu.fr.

- $\frac{1}{C} \leq k \leq C$ in $D_T := \bigcup_{[0,T]} \{t\} \times D(t)$ for some C > 1.
- k-1 has a constant sign in D_T .
- (C-Lip) The mapping $t \mapsto D(t)$ is Lipschitz smooth in the following manner: $\alpha > 0$ exists such that:

$$\forall t, t' \in [0, T], \ \forall x \in \mathbb{R}^3, \ d(x, D(t')) \ge d(x, D(t)) - \alpha |t - t'|.$$

$$\bullet \ \, \gamma(t,x) = \left\{ \begin{array}{ll} 1 \quad \text{if} \quad x \not\in D(t), \\ k(t,x) \quad \text{if} \quad x \in D(t). \end{array} \right.$$

Remark 1. We do not assume any smoothness on D(t) or that $\partial D(t) \cap \Gamma = \emptyset$. First, assumption (C-Lip) implies that the Lebesgue measure of the set $D(t') \setminus D(t)$ converges to 0 as t - t' tends to 0 since $D(t') \subset \{x \in \mathbb{R}^3; d(x, D(t)) \leq \alpha |t - t'|\}$. Second hand, the assumption that γ belongs to $C([0, T]; L^1(\Omega))$ implies that functions such as $t \mapsto \int_{\Omega} \gamma(t, x) dx$ are continuous. In fact, our assumption on the smoothness of $t \mapsto D(t)$ can be improved, at least for Theorems 3 and 4.

Our main purpose is to study discontinuous perturbations, but we allow $\gamma(t,\cdot)$ to be continuous. Hence, we impose the following assumption.

(C-D)
$$\inf_{x \in K} |k(t,x) - 1| > 0$$
 for any compact set $K \subset D(t)$, for all $t \in [0,T]$.

We consider a large parameter $\tau > 0$ and allow the initial data $v_0(x)$ to depend on τ under the following condition.

(C-0) τ -independent positive constants C, l_0 exist such that $||v_0||_{L^2(\Omega)} \leq Ce^{\tau l_0}$, for all τ .

Physically, the region D(t) corresponds to some inclusion in the medium that has different heat conductivity from that in the background domain Ω . The problem addressed in this study is the determination of D(t) using knowledge of the Dirichlet-to-Neumann map (D-N map):

$$\Lambda_{\gamma,v_0}: f \mapsto \partial_{\nu} v(t,x), \quad (t,x) \in \Gamma_T,$$

where $v = \mathcal{V}(\gamma; f)$ denotes the unique solution of (1), ν is the outer unit normal to Γ , and $\partial_{\nu} = \frac{\partial}{\partial \nu} = \nu \cdot \nabla_{x}$. In physical terms, f = f(t, x) is the temperature distribution on the boundary and $\Lambda_{\gamma, v_0}(f)$ is the resulting heat flux through the boundary.

The above inverse boundary value problem is related to nondestructive testing where we search for anomalous materials inside a known material.

To clarify our purpose, we briefly recall Ikehata's probe method for the elliptic inverse problem.

1.2. The elliptic situation

In the probe method for the well-known elliptic situation, Problem (1) is replaced by

$$\begin{cases} \operatorname{div}_{x}(\gamma \nabla_{x} v) = 0 & \text{in } \Omega, \\ v = f & \text{on } \Gamma, \end{cases}$$
 (2)

and D_T is replaced by an open set $D \subset \Omega$. The Dirichlet-to-Neumann operator Λ_{γ} is a mapping: $H^{\frac{1}{2}}(\Gamma) \ni f \mapsto \partial_{\nu} v \in H^{-\frac{1}{2}}(\Gamma)$, where v is the unique solution of (2). The probe method (see [7]) starts by considering the fundamental solution $h_0(x) = \frac{1}{4\pi|x-y|}$ of $-\Delta h_0 = \delta_y$, with pole $y \in \Omega$. Then, we approximate h_0 outside a needle $\Sigma \subset \overline{\Omega}$ with one end on Γ and the other is y based on a sequence $\{h_j\}_{j\geq 1}$ such that $-\Delta_x h_j = 0$ in Ω , and we estimate $\int_D |\nabla h_j(x)|^2 dx$ (or $\int_D |\nabla h_0(x)|^2 dx$) according to the following pair of inequalities:

Download English Version:

https://daneshyari.com/en/article/4614289

Download Persian Version:

https://daneshyari.com/article/4614289

<u>Daneshyari.com</u>