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In this paper, we consider a simplified version of a fluid–structure PDE model 
which has been of longstanding interest within the mathematical and biological 
sciences. In it, a n-dimensional heat equation replaces the original Stokes system, 
so as to ultimately have a vector-valued heat equation and vector-valued wave 
equation compose the coupled PDE system under study. The coupling between 
the two disparate PDE components occurs across a boundary interface. As such, 
the entire PDE dynamics manifests features of both hyperbolicity and parabolicity. 
For this heat–structure system, our main result of uniform stability is as follows: 
Given smooth initial data – i.e., data in the domain of the underlying semigroup 
generator of the coupled PDE system – the corresponding solutions decay at the 
rate of o(t−1). This establishes the long-conjectured optimal rate. The problem 
of obtaining sharp rational decay rates for the heat–wave PDE, under present 
consideration, has been a much considered problem, with the modus operandi of 
earlier efforts taking place within the time domain. By contrast, we adopt here a 
frequency domain approach which is based upon a recent resolvent criterion, and 
which was initiated in our prior effort, wherein we obtained the rate of decay o( 1√

t
). 

The present optimal improvement o(t−1) is achieved by employing an additional 
tool in our analysis – a microlocal analysis argument – to estimate a critical term 
involving two problematic boundary traces.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and statement of main result

Introduction. We proceed to describe the canonical heat–structure PDE model of the present paper. 
This is the first step toward the more realistic fluid–structure PDE model which has the more challenging 
dynamic Stokes equation in place of the n-dimensional heat equation [42, p. 121], [19]. It will be treated 
in a subsequent publication [6], which will take advantage of the present treatment, in order to tackle the 
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Fig. 1. The fluid–structure interaction.

additional challenge due to the presence of the pressure. Throughout, Ωf ⊆ Rn, n = 2 or 3, will denote 
the bounded domain on which the heat component of the coupled PDE system evolves. Its boundary 
∂Ωf = Γs ∪ Γf , Γs ∩ Γf = ∅, with each boundary piece being sufficiently smooth. Moreover, the geometry 
Ωs, immersed within Ωf , will be the domain on which the structural component evolves with time. As 
configured then, the coupling between the two distinct fluid and elastic dynamics occurs across boundary 
interface Γs = ∂Ωs; see Fig. 1. In addition, the unit normal vector ν(x) will be directed away from Ωf , and 
so toward Ωs. (This specification of the direction of ν will influence the computations to be done below.)

On this geometry in Fig. 1, we thus consider the following heat–structure PDE model in solution 
variables u = [u1(t, x), u2(t, x), . . . , un(t, x)] (the heat component, replacing the fluid velocity field), and 
w = [w1(t, x), w2(t, x), . . . , wn(t, x)] (the structural displacement field):

(PDE)
{

ut − Δu = 0 in (0, T ) × Ωf , (a)
wtt − Δw + w = 0 in (0, T ) × Ωs; (b)

(BC)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u|Γf

= 0 on (0, T ) × Γf , (c)
u = wt on (0, T ) × Γs, (d)

∂u

∂ν
= ∂w

∂ν
on (0, T ) × Γs; (e)

(IC) [w(0, ·), wt(0, ·), u(0, ·)] = [w∗
0 , w

∗
1 , u

∗
0] ∈ H, (f) (1.1)

where space of well-posedness is taken to be the finite energy space

H ≡ H1(Ωs) × L2(Ωs) × L2(Ωf ), (1.2)

for the variable [w1, w2, u]. (We are using the common notation Hs ≡ [Hs]n.) Of course, H is a Hilbert 
space with the following norm inducing inner product, where (f, g)Ω ≡

∫
Ω fgdΩ:

⎛⎝⎡⎣v1

v2

f

⎤⎦ ,

⎡⎣ ṽ1
ṽ2
f̃

⎤⎦⎞⎠
H

= (∇v1,∇ṽ1)Ωs
+ (v1, ṽ1)Ωs

+ (v2, ṽ2)Ωs
+
(
f, f̃

)
Ωf

. (1.3)

Semigroup well-posedness. As was done in [5,7–13,4] for a fluid–structure system in which Stokes flow is 
used to describe the fluid component of the dynamics, one can provide a non-trivial semigroup formulation 
so as to describe the corresponding time-evolving PDE model (1.1)(a)–(f) (as a very special case of the 
above references, as no pressure occurs now). To this end, one define a modeling generator A : H → H as 
follows:
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