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This work is dedicated to study the cardiac defibrillation problem by using an 
optimal thoracic electroshock treatment. The problem is formulated as an optimal 
control problem in a 3D domain surrounded by the bath and including the heart. 
The control corresponds to the thoracic electroshock and the model describing 
the electrical activity in the heart is the bidomain model. The bidomain model 
is coupled with the quasi-static Maxwell’s equation to consider the effect of an 
external bathing medium. The existence and uniqueness of a weak solution for the 
direct problem is assessed as well as the existence of a weak solution for the adjoint 
problem. The numerical discretization is realized using a finite element method 
for the spatial discretization and linearly implicit Runge–Kutta methods for the 
temporal discretization of the partial differential equations. The numerical results 
are demonstrated for the termination of re-entry waves.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

One of the leading causes of death all over the world are cardiovascular diseases. Knowledge and under-
standing of the electrical heart activity are important issues in order to establish new diagnostic techniques. 
In this work we would like to use control techniques by mean of high external stimulations over the body 
thorax in order to steer the heart electrical activity to a given level. This kind of treatment is used in 
cardiology to reset some arrhythmia disease (for more details see e.g. [32] and [33]). In literature, numerous 
investigations focused on electrophysiologically important issues such as the formation of reentrant arrhyth-
mias such as spiral waves [17] and their degeneration into fibrillation [28], or the termination of turbulent 
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electrical activity in the heart by applying strong electric fields (defibrillation) [4], the only known therapy 
to terminate otherwise lethal ventricular fibrillation.

In order to model the electrical heart activity, we distinguish the geometry of the bath and the electrical 
activation in the myocardium which is based on the bidomain model. This model was introduced by Tung 
[29] and it is widely considered to be among the most complete descriptions of bioelectric activity at the 
tissue and organ level [30,8]. The electrical heart activity and the volume conductor for the bath model is 
given by the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βcm∂tu−∇ · (Mi(x)∇ui) + βIion(u,w) = Ii, (t, x) ∈ ΩT,H := (0, T ) × ΩH ,

βcm∂tu + ∇ · (Me(x)∇ue) + βIion(u,w) = Ie, (t, x) ∈ ΩT,H ,

−∇ · (Ms(x)∇us) = 0, (t, x) ∈ ΩT,B := (0, T ) × ΩB ,

∂tw −H(u,w) = 0, (t, x) ∈ ΩT,H ,

(Mi(x)∇ui) · η = 0, (t, x) ∈ ΣT,H := (0, T ) × ΣH ,

(Me(x)∇ue) · η = (Ms(x)∇us) · η, (t, x) ∈ ΣT,H ,

ue = us, (t, x) ∈ ΣT,H ,

(Ms(x)∇us) · ηs = 0, (t, x) ∈ ΣT,B\ΣT,H ,

u(0, x) = u0(x), x ∈ ΩH ,

w(0, x) = w0(x), x ∈ ΩH .

(1.1)

The heart’s spatial domain is represented by ΩH ⊂ R
3 which is a bounded open subset, and by ΣH

we denote its piecewise smooth boundary. A distinction is made between the intracellular and extracellular 
tissues which are separated by the cardiac cellular membrane. The thorax is modeled by a volume conduction 
ΩB with a piecewise smooth boundary ΣB := ΣH ∪ Σ, where Σ is the thorax surface. The whole domain 
is denoted by the Ω = Ω̄H ∪ ΩB , we refer to Fig. 1 for the pictorial representation of such computational 
domain and other sub-domains. For all (x, t) ∈ ΩT,H := ΩH × (0, T ), ui = ui(x, t), ue = ue(x, t) stand 
for the intracellular and extracellular potentials respectively, and for all (x, t) ∈ ΩT,B := ΩB × (0, T ), 
us(x, t) stands for the bathing medium electric potential. The transmembrane potential is the difference 
u = u(x, t) := ui − ue. Mi(x) and Mj(x) are tensors which represent respectively the intracellular and 
extracellular conductivity of the tissue respectively. The diagonal matrix Ms represents the conductivity 
tensor of the bathing medium.

The constant cm > 0 is the surface capacitance of the membrane and β is the surface-to-volume ratio.
We denote by Ii and Ie the internal and the external current stimulus respectively. Moreover, H(u, w) and 

Iion(u, w) are functions which correspond to the widely known FitzHugh–Nagumo model for the membrane 
and ionic currents (see e.g. [14,22]). For detailed exposition of the such several ionic models we refer to [15]
and [27]. Recalling the definition of H(u, w) and Iion(u, w), we know from [14] and [22] that the membrane 
kinetics can be simply reformulated by:

H(u,w) = au− bw, (1.2)

Iion(u,w) = −λ(w − u(1 − u)(u− θ)), (1.3)

where a, b, λ, θ are given parameters. Moreover, we impose the following zero mean condition for the extra-
cellular potential in order to obtain uniqueness of the elliptic systems:

ˆ

ΩH

ue(t, x)dx = 0, for all t ∈ (0, T ). (1.4)
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