Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Second-order Riesz transforms associated with magnetic Schrödinger operators

霐

CrossMark

The Anh Bui^a, Fu Ken Ly^{b,*}, Sibei Yang^c

^a Department of Mathematics, Macquarie University, Sydney, Australia

^b Sydney Institute of Business and Technology, Sydney, Australia

^c School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, China

ARTICLE INFO

Article history: Received 24 August 2015 Available online 28 January 2016 Submitted by C. Gutierrez

Keywords: Magnetic Schrödinger operator Musielak–Orlicz Hardy space Riesz transform Commutator Muckenhoupt weight

ABSTRACT

Let $\mathcal{A} = -(\frac{1}{i}\nabla - \mathbf{a})^2 + V$ be a magnetic Schrödinger operator on \mathbb{R}^n , where $\mathbf{a} \in L^2_{loc}(\mathbb{R}^n)^n$ and $0 \leq V \in L^1_{loc}(\mathbb{R}^n)$. We show that $L^p(\mathbb{R}^n)$ boundedness of $L_j L_k \mathcal{A}^{-1}$ and $V \mathcal{A}^{-1}$ for some interval of p automatically implies boundedness of the same operators and their commutators on $L^p_w(\mathbb{R}^n)$ for certain Muckenhoupt weights w, and on the Musielak–Orlicz Hardy type spaces.

© 2016 Elsevier Inc. All rights reserved.

Contents

1. 2. 3.	Introc Applie Prelin	duction
	3.1.	Musielak–Orlicz functions
	3.2.	Musielak–Orlicz–Hardy spaces
	3.3.	Musielak–Orlicz–Hardy spaces associated to magnetic Schrödinger operators
4.	Proofs	fs of main results
Acknowledgments		
Refer	ences.	

1. Introduction

Let $\mathbf{a} = (a_1, a_2, \dots, a_n) : \mathbb{R}^n \to \mathbb{R}^n$ and $V : \mathbb{R}^n \to \mathbb{R}$ satisfy

$$\mathbf{a} \in L^2_{\mathrm{loc}}(\mathbb{R}^n)^n$$
 and $0 \le V \in L^1_{\mathrm{loc}}(\mathbb{R}^n).$ (1.1)

* Corresponding author.

E-mail addresses: the.bui@mq.edu.au (T.A. Bui), ken.ly@learning.sibt.nsw.edu.au (F.K. Ly), yangsb@lzu.edu.cn (S. Yang).

http://dx.doi.org/10.1016/j.jmaa.2016.01.062 0022-247X/© 2016 Elsevier Inc. All rights reserved. Consider the magnetic Schrödinger operator:

$$\mathcal{A}(\mathbf{a}, V) := \sum_{j=1}^{n} \left(\frac{1}{i}\partial_{j} - a_{j}\right)^{2} + V, \quad \text{on} \quad \mathbb{R}^{n}, \quad n \ge 2,$$
(1.2)

where **a** is the magnetic potential and V is the electric potential and $\partial_j = \frac{\partial}{\partial x_j}$. Set $L_j := \frac{1}{i}\partial_j - a_j$ for $1 \le j \le n$.

The boundedness of the Riesz transforms related to the magnetic Schrödinger operator (1.2) on $L^p(\mathbb{R}^n)$ has attracted much interest in harmonic analysis and has been studied intensively by many mathematicians [1,3,4,13,24,25]. Let us give a brief account of this direction of research.

- (a) Under assumption (1.1) it was shown independently by [13] and [26] that the first order Riesz transforms $V^{1/2} \mathcal{A}^{-1/2}$ and $L_k \mathcal{A}^{-1/2}$, with k = 1, ..., n, are bounded on $L^p(\mathbb{R}^n)$ for 1 .
- (b) With stronger conditions, namely that V belongs to the Muckenhoupt class \mathbb{A}_{∞} , the authors in [1,24] obtained boundedness for p > 2 in the non-magnetic case $\mathcal{A} = -\Delta + V$ (which happens when $\mathbf{a} = \vec{0}$). This was later extended to magnetic operators in [3,4].
- (c) The second order Riesz transforms $L_j L_k \mathcal{A}^{-1}$ and $V \mathcal{A}^{-1}$ were considered by Shen in [25], and further studied in [3,4].

Once boundedness on $L^p(\mathbb{R}^n)$ is established it is natural to consider other function spaces. Examples include the weighted spaces $L^p_w(\mathbb{R}^n)$ with Muckenhoupt weights [5,6], and the Hardy spaces $H^p(\mathbb{R}^n)$ and their generalizations [7,9,10,20,30].

In this article we are interested in extending some of these results for the *second order* Riesz transforms. Our aim is to give general statements about boundedness in other function spaces once the $L^p(\mathbb{R}^n)$ boundedness is known.

In several of these works (for example [5,9,20]) the approach to study the Riesz transforms is through the formulae

$$\mathcal{A}^{-1/2} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t\mathcal{A}} \frac{dt}{\sqrt{t}}$$
 and $\mathcal{A}^{-1} = \int_{0}^{\infty} e^{-t\mathcal{A}} dt$

where $e^{-t\mathcal{A}}$ is the heat semigroup associated to \mathcal{A} , with heat kernel $p_t(x, y)$. Thus to study the operators $L_j\mathcal{A}^{-1/2}$ and $L_jL_k\mathcal{A}^{-1}$, estimates on the derivatives $L_jp_t(x, y)$ and $L_jL_kp_t(x, y)$ are a crucial element. Typically to obtain such estimates one requires three ingredients:

- (i) boundedness of the corresponding Riesz transform on some $L^{p_0}(\mathbb{R}^n)$;
- (ii) Gaussian bounds on the heat kernel $p_t(x, y)$;
- (iii) specific properties of V and \mathbf{a} .

Our observation in this article is that (i) is sufficient to replace (iii) in such calculations. Indeed this was done for the first derivatives $L_j p_t(x, y)$ in [6], and in the current article we do the same for the second derivatives $L_j L_k p_t(x, y)$ (see Proposition 4.1 below). Of course in practice one still requires (iii) to obtain (i) and is generally speaking a non-trivial task.

The main thrust of our results say that once $L^p(\mathbb{R}^n)$ boundedness holds, then one automatically has weighted and Hardy estimates also. They are stated in Theorems 1.1–1.4 below and will assume one or both of the following conditions. Let $p_0 > 1$. Download English Version:

https://daneshyari.com/en/article/4614383

Download Persian Version:

https://daneshyari.com/article/4614383

Daneshyari.com