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1. Introduction

Let a = (a1,a2,...,a,) : R® - R™ and V : R® — R satisfy

ac L (RM)™ and 0<VelLL. (RY). (1.1)
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Consider the magnetic Schrédinger operator:

n

1
Aa, V) := Z(—Oj —aj)2+V, on R", n>2 (1.2)
i
j=1
where a is the magnetic potential and V is the electric potential and 0, = % Set L; := %(93- — a; for

1<j<n

The boundedness of the Riesz transforms related to the magnetic Schrédinger operator (1.2) on LP(R™)
has attracted much interest in harmonic analysis and has been studied intensively by many mathematicians
[1,3,4,13,24,25]. Let us give a brief account of this direction of research.

(a) Under assumption (1.1) it was shown independently by [13] and [26] that the first order Riesz transforms
V12 A=1/2 and Ly A=/2, with k = 1,...,n, are bounded on LP(R") for 1 < p < 2.

(b) With stronger conditions, namely that V belongs to the Muckenhoupt class Ao, the authors in [1,24]
obtained boundedness for p > 2 in the non-magnetic case A = —A 4+ V (which happens when a = 6)
This was later extended to magnetic operators in [3,4].

(c) The second order Riesz transforms L;LgA~" and VA~ were considered by Shen in [25], and further
studied in [3,4].

Once boundedness on LP(R™) is established it is natural to consider other function spaces. Examples
include the weighted spaces L? (R™) with Muckenhoupt weights [5,6], and the Hardy spaces HP(R™) and
their generalizations [7,9,10,20,30].

In this article we are interested in extending some of these results for the second order Riesz trans-
forms. Our aim is to give general statements about boundedness in other function spaces once the LP(R"™)
boundedness is known.

In several of these works (for example [5,9,20]) the approach to study the Riesz transforms is through
the formulae

oo
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A1V = — [ etA and A7l = /eftA dt
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tA is the heat semigroup associated to A, with heat kernel p,(z, y). Thus to study the operators

where e~
Lj.»érl/2 and L;LpA~1, estimates on the derivatives L;p;(z,y) and L;Lgpi(z,y) are a crucial element.

Typically to obtain such estimates one requires three ingredients:

(i) boundedness of the corresponding Riesz transform on some LPo(R™);
(ii) Gaussian bounds on the heat kernel p(z,y);
(iii) specific properties of V and a.

Our observation in this article is that (i) is sufficient to replace (iii) in such calculations. Indeed this was
done for the first derivatives L;p;(x,y) in [6], and in the current article we do the same for the second
derivatives L;Lyp.(z,y) (see Proposition 4.1 below). Of course in practice one still requires (iii) to obtain
(i) and is generally speaking a non-trivial task.

The main thrust of our results say that once LP(R™) boundedness holds, then one automatically has
weighted and Hardy estimates also. They are stated in Theorems 1.1-1.4 below and will assume one or both
of the following conditions. Let pg > 1.
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