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We investigate the effects of habitat complexity and multi-time delays on dynamics 
of a bio-economic predator–prey model. The differential–algebraic system theory is 
applied to transform the bio-economic model into a normal form, so that the local 
stability and existence of periodic solutions can be examined by varying the de-
lays and the habitat complexity parameter. The direction of Hopf bifurcation and 
the stability of bifurcated periodic solutions are investigated. We also discuss the ef-
fect of fluctuating environment on dynamical behavior of a corresponding stochastic 
delayed-differential–algebraic system and derive expressions for intensities of popu-
lation fluctuations. The model is also used to study the optimal harvesting strategy 
in order to maximize economic profit while sustaining the ecosystem. Numerical 
simulations are designed to illustrate the effectiveness of theoretical analysis.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A predator–prey system, intensively studied in the literature (see [22,23,14,20]), is generally given by

{
ẋ(t) = xg(x) − yf(x, y),
ẏ(t) = βyf(x, y) − dy,

(1)

where x and y denote the number of preys and predators, respectively. In the model, g(x) is the per capita 
growth rate of the prey in the absence of predation. The trophic function f(x, y) denotes the amount of 
prey caught by a predator per unit of time, β is the rate of conversion of nutrients from the prey into the 
reproduction of the predator and d is the mortality rate of the predator in the absence of prey.
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There are different types of functional responses such as the prey-dependent type [25] (including the 
Holling I–III) and the predator-dependent type [12] (including the Beddinton–DeAngelis function and ratio-
dependent response). It is also noted that (see [5,17,19]) habitat complexity can reduce the probability of 
capturing a prey by decreasing encounter rates between predator and prey. This led to incorporating the 
influence of habitat complexity into the Holling II [11] type functional response as follows:

f(x) = α(1 − δ)x
1 + α(1 − δ)γx, (2)

where α and γ denote the attack coefficient and handing time for predation, respectively. The constant δ

(0 < δ < 1) is a nondimensional parameter that reflects the strength of habitat complexity. When the 
habitat complexity is ignored, i.e., δ = 0, the function (2) reduces to the classic Holling Type II functional 
response. Our work here is based on the aforementioned functional response.

It is well known that extensive and unregulated harvesting can cause species extinction, leading to the 
destruction of a natural predator–prey ecosystem. Regulated harvesting thus becomes a necessity to maintain 
an interactive biological system. However, such a regulation is always influenced by the cost-benefit of the 
harvesting activities. There has already an increasing body of literature for the modelling and analysis of 
bio-economic systems, often described by differential–algebraic equations (see, for example, [26,3,27,4,18]
and references therein). In particular, in [26], a stage-structure differential–algebraic predator–prey system 
subject to harvesting is proposed to investigate the effects of harvesting on population dynamics. A singularly 
induced bifurcation leading to impulses and stability switch occurs at some critical point of economic interest, 
yielding rapid expansion of the predator. Zhang et al. [27] studied a ratio-dependent prey–predator singular 
model and analyzed the direction and stability of periodic solutions. However, this work ignored the fact that 
biological processes normally do not take place instantaneously due to the interaction with environment 
and other species, such as gestation, maturity and hunting. Chakraborty et al. [3] introduced a single 
discrete gestation delay in a differential–algebraic bio-economic system and established Hopf bifurcations 
in the neighborhood of coexisting equilibrium point. Liao et al. [15] investigated Hopf bifurcations of a 
three-species predator–prey system with two delays. In their study, it is possible to rescale the time to 
regard the sum of these two delays as a natural bifurcation parameter. This idea was also utilized by Song 
et al. [21] and Ma [16], while other relevant studies such as [24,8] simplified their analysis by requiring 
the two delays be identical. However, since the delays describing different ecological interaction are always 
different, it is important to discuss the impact of each delay independently on the dynamics, respectively.

In this paper, we study the following differential–algebraic bio-economic model with two time delays and 
habitat complexity:

⎧⎪⎪⎪⎪⎪⎨
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dx

dt
= rx

(
1 − x(t− τ1)

K

)
− α(1 − δ)xy

1 + αγ(1 − δ)x,

dy

dt
= βα(1 − δ)x(t− τ2)y

1 + αγ(1 − δ)x(t− τ2)
− dy − Ey,

E(py − w) −m = 0,

(3)

where r > 0 is the intrinsic growth rate of prey; K > 0 is the carrying capacity of prey; d is the intrinsic 
mortality rate of the predator species. We assume the prey dynamics is delayed by τ1 due to slow replacement 
of resources and the predator takes time τ2 to convert the food into its growth. In the model, the economics 
of harvesting is described by the algebraic equation, where E is the predator-dependent harvesting rate, 
p > 0 is the harvesting reward, Ew is the total fixed cost and m > 0 is the fixed profit.

The initial conditions for the predator–prey subsystem (3) are

(x|[−τ,0], y|[−τ,0]) ∈ C+([−τ, 0];R2
+)
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