Generalizations of a terminating summation formula of basic hypergeometric series and their applications

Jun-Ming Zhu
Department of Mathematics, Luoyang Normal University, Luoyang City, Henan Province 471022, China

A R T I C L E I N F O

Article history:

Received 25 January 2015
Available online 29 December 2015
Submitted by B.C. Berndt

Keywords:

Basic hypergeometric series
Analytic function
Analytic continuation q-Analogue
Jacobi's triple product identity
Quintuple product identity

Abstract

We generalize a terminating summation formula to a unilateral nonterminating, and further, a bilateral summation formula by a property of analytic functions. The unilateral one is proved to be a q-analogue of a ${ }_{4} F_{3}$-summation formula. And, an identity unifying Jacobi's triple product identity and the quintuple product identity is obtained as a special case of the bilateral one.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we suppose $0<|q|<1$ and follow the notations and terminology in [4]. The q-shifted factorials are defined respectively by

$$
(a ; q)_{\infty}=\prod_{i=0}^{\infty}\left(1-a q^{i}\right) \quad \text { and } \quad(a ; q)_{n}=\frac{(a ; q)_{\infty}}{\left(a q^{n} ; q\right)_{\infty}}
$$

for any integer n. Let

$$
(a, b, \cdots, c ; q)_{k}=(a ; q)_{k}(b ; q)_{k} \cdots(c ; q)_{k}
$$

where k is any integer or ∞. The $(m+1)$-basic hypergeometric series Φ (see $[4$, p. 95, Eqs. (3.9.1) and (3.9.2)]) and Ψ are defined respectively by

[^0]\[

$$
\begin{aligned}
& \Phi\left(\begin{array}{c}
a_{1}, \cdots, a_{r}: c_{1,1}, \cdots, c_{1, r_{1}}: \cdots: c_{m, 1}, \cdots, c_{m, r_{m}} \\
b_{1}, \cdots, b_{r-1}: d_{1,1}, \cdots, d_{1, r_{1}}: \cdots: d_{m, 1}, \cdots, d_{m, r_{m}}
\end{array} ; q, q_{1}, \cdots, q_{m} ; z\right) \\
& \quad=\sum_{n=0}^{\infty} \frac{\left(a_{1}, \cdots, a_{r} ; q\right)_{n}}{\left(q, b_{1}, \cdots, b_{r-1} ; q\right)_{n}} z^{n} \prod_{j=1}^{m} \frac{\left(c_{j, 1}, \cdots, c_{j, r_{j}} ; q_{j}\right)_{n}}{\left(d_{j, 1}, \cdots, d_{j, r_{j}} ; q_{j}\right)_{n}}
\end{aligned}
$$
\]

and

$$
\begin{aligned}
& \Psi\left(\begin{array}{l}
\left.a_{1}, \cdots, a_{r}: c_{1,1}, \cdots, c_{1, r_{1}}: \cdots: c_{m, 1}, \cdots, c_{m, r_{m}} ; q, q_{1}, \cdots, q_{m} ; z\right) \\
b_{1}, \cdots, b_{r}: d_{1,1}, \cdots, d_{1, r_{1}}: \cdots: d_{m, 1}, \cdots, d_{m, r_{m}} \\
\quad=\sum_{n=-\infty}^{\infty} \frac{\left(a_{1}, \cdots, a_{r} ; q\right)_{n}}{\left(b_{1}, \cdots, b_{r} ; q\right)_{n}} z^{n} \prod_{j=1}^{m} \frac{\left(c_{j, 1}, \cdots, c_{j, r_{j}} ; q_{j}\right)_{n}}{\left(d_{j, 1}, \cdots, d_{j, r_{j}} ; q_{j}\right)_{n}}
\end{array} .\right.
\end{aligned}
$$

The main results of this paper are Theorems 1.1 and 1.2 below.
Theorem 1.1. For $\left|\frac{1}{s t}\right|<1$, there holds

$$
\left.\begin{array}{l}
\Phi\left(\begin{array}{ccccc}
a^{2}, & a q^{2}, & -a q^{2} & : & s, \\
a, & -a & : & a q / s, & a q / t
\end{array} ; q^{2}, q ;-\frac{1}{s t}\right.
\end{array}\right)
$$

Theorem 1.2. For $\left|\frac{a^{2}}{b s t}\right|<1$, there holds

$$
\left.\begin{array}{l}
\Psi\left(\begin{array}{cccccc}
a q^{2}, & -a q^{2}, & b & : & s, & t \\
a, & -a, & a^{2} q^{2} / b & : & a q / s, & a q / t
\end{array} q^{2}, q ;-\frac{a^{2}}{b s t}\right.
\end{array}\right) .
$$

For miscellaneous summation formulas of basic hypergeometric series, the readers can consult Gasper and Rahman [4].

This paper is organized as follows.
In Section 2, we will firstly prove Theorem 1.1 from a terminating summation formula in [4], and then, Theorem 1.2 will be deduced from Theorem 1.1. In both the proofs, a method similar to that in [5] and [2] is used, where Ramanujan's ${ }_{1} \psi_{1}$ and Bailey's ${ }_{6} \psi_{6}$ summation formulas were proved respectively.

In Section 3, we will prove that Theorem 1.1 is a q-analogue of a ${ }_{4} F_{3}$-summation formula in Andrews, Askey and Roy's book [1].

In Section 4, special cases of Theorem 1.2 will be considered. We will prove that Theorem 1.2 is a generalization of Jacobi's triple product identity and the quintuple product identity.

In the following, LHS (or RHS) means the left (or right) hand side of a certain equality and \mathbf{N} denotes the set of nonnegative integers.

2. Proofs of Theorems 1.1 and 1.2

The lemma (see, for example, [6, p. 90, Thm. 1.2]) below is the foundation of our proofs in this section.
Lemma 2.1. Let U be a connected open set and f, g be analytic on U. If f and g agree infinitely often near an interior point of U, then we have $f(z)=g(z)$ for all $z \in U$.

https://daneshyari.com/en/article/4614402

Download Persian Version:
https://daneshyari.com/article/4614402

Daneshyari.com

[^0]: E-mail address: junming_zhu@163.com.
 http://dx.doi.org/10.1016/j.jmaa.2015.12.031
 0022-247X/© 2015 Elsevier Inc. All rights reserved.

