Stabilization of two coupled wave equations on a compact manifold with boundary

L. Aloui ${ }^{\text {a }}$, M. Daoulatli ${ }^{\mathrm{b}, *}$
a University of Tunis El-Manar, Tunisia
b University of Dammam, Saudi Arabia

A R T I C L E I N F O

Article history:

Received 2 May 2015
Available online 23 December 2015 Submitted by X. Zhang

Keywords:

Coupled wave
Energy decay
Stabilization

Abstract

In this paper we study the indirect stabilization of coupled wave equations by an order one term on a compact manifold with boundary. Only one of the two equations is directly damped by a localized damping term. We prove that the energy of smooth solutions of the system decays polynomially under geometric conditions on both the coupling and the damping regions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and statement of the results

Let (Ω, g) be a C^{∞} compact connected n-dimensional Riemannian manifold with boundary Γ. We denote by Δ the Laplace-Beltrami operator on Ω for the metric g. We take two nonnegative smooth functions a and b on Ω. We consider the stabilization problem for the system of coupled wave equations

$$
\begin{cases}\partial_{t}^{2} u-\Delta u+b(x) v+a(x) \partial_{t} u=0 & \text { in } \mathbb{R}_{+}^{*} \times \Omega \tag{1}\\ \partial_{t}^{2} v-\Delta v+b(x) u=0 & \text { in } \mathbb{R}_{+}^{*} \times \Omega \\ u=v=0 & \text { on } \mathbb{R}_{+}^{*} \times \Gamma \\ \left(u(0, x), \partial_{t} u(0, x)\right)=\left(u_{0}, u_{1}\right) \text { and }\left(v(0, x), \partial_{t} v(0, x)\right)=\left(v_{0}, v_{1}\right) & \text { in } \Omega\end{cases}
$$

In this paper, we deal with real solutions, the general case can be treated in the same way. With the system above we associate the energy functional given by

$$
\begin{align*}
E_{u, v}(t)= & \frac{1}{2} \int_{\Omega}\left(|\nabla u(t, x)|^{2}+|\nabla v(t, x)|^{2}+\left|\partial_{t} u(t, x)\right|^{2}+\left|\partial_{t} v(t, x)\right|^{2}\right) d x \\
& +\int_{\Omega} b(x) u(t, x) v(t, x) d x \tag{2}
\end{align*}
$$

[^0]We assume that a and b are two nonnegative smooth functions such that,

$$
\begin{equation*}
\|b\|_{\infty} \leq \frac{1-\delta}{\lambda^{2}} \tag{3}
\end{equation*}
$$

for some $\delta>0$, where λ is the Poincare's constant on Ω. Under these assumptions we have

$$
\begin{align*}
E_{u, v}(0)= & \frac{1}{2} \int_{\Omega}\left(\left|\nabla u_{0}(x)\right|^{2}+\left|\nabla v_{0}(x)\right|^{2}+\left|u_{1}(x)\right|^{2}+\left|v_{1}(x)\right|^{2}\right) d x \\
& \quad+\int_{\Omega} b(x) u_{0}(x) v_{0}(x) d x \\
\geq & \frac{\delta}{2} \int_{\Omega}\left(\left|\nabla u_{0}(x)\right|^{2}+\left|\nabla v_{0}(x)\right|^{2}+\left|u_{1}(x)\right|^{2}+\left|v_{1}(x)\right|^{2}\right) d x \tag{4}
\end{align*}
$$

for all $\left(u_{0}, v_{0}, u_{1}, v_{1}\right) \in \mathcal{H}=H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \times L^{2}(\Omega) \times L^{2}(\Omega)$.
The linear evolution equation (1) can be rewritten under the form

$$
\left\{\begin{array}{c}
\frac{d}{d t} U+\mathcal{A} U=0 \tag{5}\\
U(0)=U_{0} \in \mathcal{H}
\end{array}\right.
$$

where

$$
U=\left(\begin{array}{c}
u \\
v \\
\partial_{t} u \\
\partial_{t} v
\end{array}\right), U_{0}=\left(\begin{array}{c}
u_{0} \\
v_{0} \\
u_{1} \\
v_{1}
\end{array}\right)
$$

and the unbounded operator \mathcal{A} on \mathcal{H} is defined by

$$
\mathcal{A}=\left(\begin{array}{cccc}
0 & 0 & -I d & 0 \\
0 & 0 & 0 & -I d \\
-\Delta & b & a & 0 \\
b & -\Delta & 0 & 0
\end{array}\right)
$$

with domain

$$
\begin{aligned}
D(\mathcal{A}) & =\{U \in \mathcal{H} ; \mathcal{A} U \in \mathcal{H}\} \\
& =\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \times\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \times H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) .
\end{aligned}
$$

Under our assumptions ($a \geq 0, b \geq 0$ and (3)) and from the linear semi-group theory (see for example [1, Theorem 2.1], [2]), we can infer that for $U_{0} \in \mathcal{H}$, the problem (5) admits a unique solution $U \in C^{0}\left(\mathbb{R}_{+}, \mathcal{H}\right)$. Moreover we have the following energy estimate

$$
\begin{equation*}
E_{u, v}(t)-E_{u, v}(0)=-\int_{0}^{t} \int_{\Omega} a(x)\left|\partial_{t} u(s, x)\right|^{2} d x d s \tag{6}
\end{equation*}
$$

for all $t \geq 0$. In addition, if $U_{0} \in D\left(\mathcal{A}^{k}\right)$ for $k \in \mathbb{N}$, then the solution $U \in \cap_{j=0}^{k} C^{k-j}\left(\mathbb{R}_{+}, D\left(\mathcal{A}^{j}\right)\right)$.
A natural necessary and sufficient condition to obtain controllability for wave equations is to assume that the control set satisfies the Geometric Control Condition (GCC) defined in [4,13]. For a subset ω of Ω and $T>0$, we shall say that (ω, T) satisfies GCC if every geodesic traveling at speed one in Ω meets ω in a

https://daneshyari.com/en/article/4614414

Download Persian Version:

https://daneshyari.com/article/4614414

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: lassaad.aloui@fsg.rnu.tn (L. Aloui), moez.daoulatli@infcom.rnu.tn (M. Daoulatli).

