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1. Introduction

The classical Littlewood-Paley inequality says (see [12]) that for any p € (1,00) and f € L,(RY),

p/2

/ / VoA fRar | dr < NI, (11)

R? \O

2
where e!® f(x) := Sif = p(t,-) = f(:) = W Jra flz — y)e% dy. In [5,8], Krylov proved the following
parabolic version: for any p € [2,00), —00 < a < b < o0, f € Ly((a,b) x R% H),
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where H is a Hilbert space. If f = f(x) and H = R then by (1.2) with a =0 and b = 2,
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This and the scaling (V—AS f(c:))(z) = V—A(cSe2f)(cx) yield (1.1). Hence (1.2) is a generalization
of (1.1). Note that by putting K (t,s,x) = vV—Ap(t — s,2), we get V/—Ael'"Af = K(t,s,-) * f(s,-) and
therefore (1.2) becomes
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In this article we extend Krylov’s results [5,8] and provide sufficient conditions on K (¢, s, ) so that inequal-
ity (1.3) holds.
The following is a special case of Theorem 2.5, which is our main result.

Theorem 1.1. Let K(t,s,x) be a function defined on R¥*2 satisfying

sup /|]-" 1(€)|2dt < .

(s,£)ERAH1

Suppose there exist functions Fy(t,s,x) (i = 1,2,3) and constants ko, C > 0 such that for any s < t and
z € R\ {0},
|D.K(t,s,2)| <Ot — s)_(dH)”O_% |Fi(t, s, (t —s)" )|,
|D2K(t,s,2)| < Ot — s) @503 (| By(t, s, (t — s)"x)| A 1)
‘ 0
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< Ot — 5)~ @R 5 (| By(t, s, (£ — 5) " 0m)| A 1).

Furthermore, assume that there exist constants p; > d + 2 such that

sup/ |
s<t

Then for any p > 2 and f € C§°(RL: H),

Fi|Fy(t,s,2)|*de < oo, (i =1,2,3).
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where N is independent of f.
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