

On regularity for the axisymmetric Navier-Stokes equations

Fangyi He^{a}, Zhiqiang Wei ${ }^{\mathrm{b}, *}$, Weiyi Zhu ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ School of Finance, Southwestern University of Finance and Economics, Chengdu 611130, Sichuan, PR China
${ }^{\text {b }}$ School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou, 450011, PR China
c Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China

A R T I C L E I N F O

Article history:

Received 9 March 2015
Available online 6 January 2016
Submitted by J. Guermond

Keywords:

Navier-Stokes equations
Axi-symmetric flow
Blow-up criterion

Abstract

In this paper, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution u satisfies $\left\|u^{\theta} 1_{r \leq \varsigma}\right\|_{L^{\alpha}\left(\left(0, T^{*}\right) ; L^{\beta}\right)}<\infty$ for any given $\varsigma>0$, with $\frac{2}{\alpha}+\frac{3}{\beta}=1$, $4 \leq \beta \leq 6$, then the strong solution keeps smoothness up to time T^{*}.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We study the following classic 3D incompressible Navier-Stokes equations in the whole space:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla u) u+\nabla p=\nu \Delta u, \tag{1.1}\\
\nabla \cdot u=0, \\
u(x, t=0)=u_{0}
\end{array}\right.
$$

where $u(x, t) \in \mathbb{R}^{3}$ and $p(x, t) \in \mathbb{R}$ denote the unknowns, velocity and pressure respectively, while ν denotes the viscous coefficient of the system.

A lot of works have been devoted to study the above system, but global well-posedness for (1.1) with arbitrary large initial data is still a challenging open problem (see [2,4,9]).

Here, we are concerned with (1.1) with axisymmetric initial data. If u_{0} is axisymmetric in system (1.1), then the solution $u(x, t)$ of system (1.1) is also axisymmetric [14,8]. So, it is convenient to write $u(x, t)$ as the following form:

[^0]$$
u(x, t)=u^{r}(r, z, t) e_{r}+u^{\theta}(r, z, t) e_{\theta}+u^{z}(r, z, t) e_{z},
$$
where e_{r}, e_{θ} and e_{z} are the standard orthonormal unit vectors in cylindrical coordinate system
\[

$$
\begin{gathered}
e_{r}=\left(\frac{x_{1}}{r}, \frac{x_{2}}{r}, 0\right)=(\cos \theta, \sin \theta, 0), \\
e_{\theta}=\left(-\frac{x_{2}}{r}, \frac{x_{1}}{r}, 0\right)=(-\sin \theta, \cos \theta, 0), \\
e_{z}=(0,0,1),
\end{gathered}
$$
\]

with $r=\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{2}}$.
By direct computation, it is easy to have the following relations.

$$
\begin{gathered}
\nabla=\left(\partial_{x_{1}}, \partial_{x_{2}}, \partial_{z}\right)^{T}=\partial_{r} e_{r}+\frac{\partial_{\theta}}{r} e_{\theta}+\partial_{z} e_{z}, \\
\Delta=\nabla \cdot \nabla=\frac{1}{r} \partial_{r}\left(r \partial_{r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}},
\end{gathered}
$$

and

$$
\frac{\partial e_{r}}{\partial \theta}=e_{\theta}, \quad \frac{\partial e_{\theta}}{\partial \theta}=-e_{r} .
$$

Accordingly, system (1.1) can be rewritten equivalently as the following form:

$$
\left\{\begin{array}{l}
\frac{\tilde{D}}{D t} u^{r}-\nu\left(\partial_{r}^{2}+\partial_{z}^{2}+\frac{1}{r} \partial_{r}-\frac{1}{r^{2}}\right) u^{r}-\frac{\left(u^{\theta}\right)^{2}}{r}+\partial_{r} p=0, \tag{1.2}\\
\frac{D}{D t} u^{\theta}-\nu\left(\partial_{r}^{2}+\partial_{z}^{2}+\frac{1}{r} \partial_{r}-\frac{1}{r^{2}}\right)^{\theta}+\frac{u^{r} u^{\theta}}{r}=0, \\
\frac{D}{D t} u^{z}-\nu\left(\partial_{r}^{2}+\partial_{z}^{2}+\frac{1}{r} \partial_{r}\right) u^{z}+\partial_{z} p=0, \\
\left.u\right|_{t=0}=u_{0}^{r} \cdot e_{r}+u_{0}^{\theta} \cdot e_{\theta}+u_{0}^{z} \cdot e_{z},
\end{array}\right.
$$

where $\frac{\tilde{D}}{D t}$ denotes the material derivative

$$
\frac{\tilde{D}}{D t}=\partial_{t}+u^{r} \partial_{r}+u^{z} \partial_{z}
$$

If $u^{\theta}=0$ (so-called without swirl), Ukhovskii and Yudovich [14] (see also [8]) proved the existence of generalized solutions, uniqueness and regularity. When $u^{\theta} \neq 0$ (with swirl), it is very complicated and difficult. For recent progress, one can find results on regularity criteria or global existence with small initial data in $[8,10-12,1,8,15]$. The question of the regularity criteria to the axisymmetric Navier-Stokes equations with swirl in dependence on the θ-component of the velocity for the first time was studied in [10] and [11]; the former deals with suitable weak solutions and the latter with the Cauchy problem. An important result was proved in [12], where it was shown that if

$$
\left\|u^{\theta}\right\|_{L^{\alpha}\left((0, T) ; L^{\beta}\right)}<\infty, \text { with } \frac{2}{\alpha}+\frac{3}{\beta}<1, \beta>4
$$

then the solution is smooth up to time T.
The fact that the only singularity may lay on the z-axis follows from [10], so very recently in [15], the following regularity criterion was established:

$$
\begin{equation*}
\left\|u^{\theta} 1_{r \leq \kappa}\right\|_{L^{\alpha}\left((0, T) ; L^{\beta}\right)}<\infty, \text { with } \frac{2}{\alpha}+\frac{3}{\beta}=1, \text { with }(\alpha, \beta)=(4,6), \tag{1.3}
\end{equation*}
$$

where $\varsigma>0$ is given.

https://daneshyari.com/en/article/4614434

Download Persian Version:
https://daneshyari.com/article/4614434

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: wei.zhiqiang@yahoo.com (Z. Wei).
 http://dx.doi.org/10.1016/j.jmaa.2015.12.045
 0022-247X/© 2015 Elsevier Inc. All rights reserved.

