On stabilization of small solutions in the nonlinear Dirac equation with a trapping potential

Scipio Cuccagna ${ }^{\mathrm{a}, *}$, Mirko Tarulli ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Geosciences, University of Trieste, via Valerio 12/1, Trieste 34127, Italy
b Department of Mathematics, University of Pisa, Largo Bruno Pontecorvo 5, Pisa 56127, Italy

A R T I C L E I N F O

Article history:

Received 12 March 2015
Available online 29 December 2015
Submitted by H.R. Parks

Keywords:

Nonlinear Dirac equation
Standing waves

A B S T R A C T

We consider a Dirac operator with short range potential and with eigenvalues. We add a nonlinear term and we show that the small standing waves of the corresponding nonlinear Dirac equation (NLD) are attractors for small solutions of the NLD. This extends to the NLD results already known for the Nonlinear Schrödinger Equation (NLS).
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We consider

$$
\left\{\begin{array}{c}
\mathrm{i} u_{t}-H u+g(u \bar{u}) \beta u=0, \text { with }(t, x) \in \mathbb{R} \times \mathbb{R}^{3}, \tag{1.1}\\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

where for $\mathscr{M}>0$ we have for a potential $V(x)$,

$$
\begin{equation*}
H=D_{\mathscr{M}}+V \tag{1.2}
\end{equation*}
$$

where $D_{\mathscr{M}}=-\mathrm{i} \sum_{j=1}^{3} \alpha_{j} \partial_{x_{j}}+\mathscr{M} \beta$, with for $j=1,2,3$,

$$
\alpha_{j}=\left(\begin{array}{cc}
0 & \sigma_{j} \\
\sigma_{j} & 0
\end{array}\right), \beta=\left(\begin{array}{cc}
I_{\mathbb{C}^{2}} & 0 \\
0 & -I_{\mathbb{C}^{2}}
\end{array}\right), \sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & \mathrm{i} \\
-\mathrm{i} & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

[^0]The unknown u is \mathbb{C}^{4}-valued. Given two vectors of $\mathbb{C}^{4}, u v:=u \cdot v$ is the inner product in \mathbb{C}^{4}, v^{*} is the complex conjugate, $u \cdot v^{*}$ is the hermitian product in \mathbb{C}^{4}, which we write as $u v^{*}=u \cdot v^{*}$. We set $\bar{u}:=\beta u^{*}$, so that $u \bar{u}=u \cdot \beta u^{*}$.

We introduce the Japanese bracket $\langle x\rangle:=\sqrt{1+|x|^{2}}$ and the spaces defined by the following norms:

$$
\begin{align*}
& L^{p, s}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right) \text { defined with }\|u\|_{L^{p, s}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)}:=\left\|\langle x\rangle^{s} u\right\|_{L^{p}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)} ; \\
& H^{k}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right) \text { defined with }\|u\|_{H^{k}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)}:=\left\|\langle x\rangle^{k} \mathcal{F}(u)\right\|_{L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)}, \text { where } \mathcal{F} \text { is the classical Fourier } \\
& \text { transform (see for instance }[25]) ; \\
& H^{k, s}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right) \text { defined with }\|u\|_{H^{k, s}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)}:=\left\|\langle x\rangle^{s} u\right\|_{H^{k}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)} ; \\
& \Sigma_{k}:=L^{2, k}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right) \cap H^{k}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right) \text { with }\|u\|_{\Sigma_{k}}^{2}=\|u\|_{H^{k}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)}^{2}+\|u\|_{L^{2, k}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)}^{2} \tag{1.3}
\end{align*}
$$

For $\mathbf{f}, \mathbf{g} \in L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)$ consider the bilinear map

$$
\begin{equation*}
\langle\mathbf{f}, \mathbf{g}\rangle=\int_{\mathbb{R}^{3}} \mathbf{f}(x) \mathbf{g}(x) d x=\int_{\mathbb{R}^{3}} \mathbf{f}(x) \cdot \mathbf{g}(x) d x \tag{1.4}
\end{equation*}
$$

We assume the following.
(H1) $g(0)=0, g \in C^{\infty}(\mathbb{R}, \mathbb{R})$.
(H2) $V \in \mathcal{S}\left(\mathbb{R}^{3}, S_{4}(\mathbb{C})\right)$ with $S_{4}(\mathbb{C})$ the set of self-adjoint 4×4 matrices and $\mathcal{S}\left(\mathbb{R}^{3}, \mathbb{E}\right)$ the space of Schwartz functions from \mathbb{R}^{3} to \mathbb{E}, with the latter a Banach space on \mathbb{C}.
(H3) $\sigma_{p}(H)=\left\{e_{1}<e_{2}<e_{3} \cdots<e_{n}\right\} \subset(-\mathscr{M}, \mathscr{M})$. Here we assume that all the eigenvalues have multiplicity 1 . Each point $\tau= \pm \mathscr{M}$ is neither an eigenvalue nor a resonance (that is, if $\left(D_{\mathscr{M}}+V\right) u=\tau u$ with $u \in C^{\infty}$ and $|u(x)| \leq C|x|^{-1}$ for a fixed C, then $\left.u=0\right)$.
(H4) There is an $N \in \mathbb{N}$ with $N>\left(\mathscr{M}+\left|e_{1}\right|\right)\left(\min \left\{e_{i}-e_{j}: i>j\right\}\right)^{-1}$ such that if $\mu \cdot \mathbf{e}:=\mu_{1} e_{1}+\cdots+\mu_{n} e_{n}$ then

$$
\begin{align*}
& \mu \in \mathbb{Z}^{n} \text { with }|\mu| \leq 4 N+6 \Rightarrow|\mu \cdot \mathbf{e}| \neq \mathscr{M} \tag{1.5}\\
& (\mu-\nu) \cdot \mathbf{e}=0 \text { and }|\mu|=|\nu| \leq 2 N+3 \Rightarrow \mu=\nu \tag{1.6}
\end{align*}
$$

(H5) Consider the set $M_{\min }$ defined in (2.5) and for any $(\mu, \nu) \in M_{\min }$ we consider the function $G_{\mu \nu}(x)$ (see the proof of Lemma 5.11 or also later in the introduction the effective hamiltonian), $\widehat{G}_{\mu \nu}(\xi)$ the distorted Fourier transform associated to H (see (5.64) and Appendix A for more details) of $G_{\mu \nu}(x)$ and the sphere $S_{\mu \nu}=\left\{\xi \in \mathbb{R}^{3}:|\xi|^{2}+\mathscr{M}^{2}=|(\nu-\mu) \cdot \mathbf{e}|^{2}\right\}$. Then we assume that for any $(\mu, \nu) \in M_{\min }$ the restriction of $\widehat{G}_{\mu \nu}$ on the sphere $S_{\mu \nu}$ is $\left.\widehat{G}_{\mu \nu}\right|_{S_{\mu \nu}} \neq 0$.

To each e_{j} we associate an eigenfunction ϕ_{j}. We choose them such that $\operatorname{Re}\left\langle\phi_{j}, \phi_{k}^{*}\right\rangle=\delta_{j k}$. To each ϕ_{j} we associate nonlinear bound states.

Proposition 1.1 (Bound states). Fix $j \in\{1, \cdots, n\}$. Then $\exists a_{0}>0$ such that $\forall z_{j} \in B_{\mathbb{C}}\left(0, a_{0}\right)$, there is a unique $Q_{j z_{j}} \in \mathcal{S}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right):=\cap_{t \geq 0} \Sigma_{t}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)$, such that

$$
\begin{align*}
& H Q_{j z_{j}}+g\left(Q_{j z_{j}} \bar{Q}_{j z_{j}}\right) \beta Q_{j z_{j}}=E_{j z_{j}} Q_{j z_{j}} \\
& Q_{j z_{j}}=z_{j} \phi_{j}+q_{j z_{j}},\left\langle q_{j z_{j}}, \phi_{j}^{*}\right\rangle=0 \tag{1.7}
\end{align*}
$$

and such that we have for any $r \in \mathbb{N}$:

https://daneshyari.com/en/article/4614438

Download Persian Version:
https://daneshyari.com/article/4614438

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: scuccagna@units.it (S. Cuccagna), tarulli@mail.dm.unipi.it (M. Tarulli).

