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We have proved the uniqueness of transonic shocks in steady supersonic flows past 
a slightly perturbed two-dimensional infinite wedge, under appropriate conditions 
on the downstream subsonic flows. We formulate it to a mathematical problem of 
the uniqueness of solutions of nonlinear partial differential equations of hyperbolic-
elliptic mixed type with a free boundary. By working on several elliptic equations 
of physical quantities separately, we obtain a priori estimates of them, and then 
prove the uniqueness without assumptions on high regularity. Moreover, uniform 
estimates on the ellipticity and the positive lower bound of the speed are achieved 
under a geometrical condition on the wedge. The mathematical ideas and techniques 
developed here will also be useful for other related problems involving similar 
analytical difficulties.
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Fig. 1.1. The attached shock-front ahead of a wedge.

1. Introduction

1.1. Transonic shocks in supersonic flow past against a 2-D wedge

In this paper we study the uniqueness problem of transonic shocks in steady potential flow past a 
two-dimensional wedge. It is well-known that a shock-front appears when a supersonic flow past a straight 
wedge, see Fig. 1.1. In the case that the vertex angle of the wedge is less than some critical value, the 
shock-front attaches to the tip of the wedge. Moreover, for a given incoming supersonic flow, the flow field 
behind the shock-front can be determined by solving the Rankine–Hugoniot conditions. It has been shown, 
for instance in [6,12], that all admissible states behind the shock-front, which satisfies both R–H conditions 
and the entropy condition, form a loop on the velocity plane. The loop is called shock polar. A part of 
the shock polar is inside the sonic circle, thus the shock solutions are categorized as supersonic shocks—if 
the flow behind the shock-front is supersonic, and transonic shocks—if the flow behind the shock-front is 
subsonic. For a given wedge whose angle is less than the critical value depending on the incoming flow, there 
are two admissible shock solutions, within which the stronger one is always transonic, and the weaker one 
may be either supersonic or transonic.

It is a longstanding open problem in multidimensional conservation to pick out the right solution from 
these two entropy solutions. Courant and Friedrichs wrote in their classic monograph Supersonic Flow and 
Shock Waves [6, p. 317–318] that

“· · · · · · , then two oblique shock fronts are possible through which the flow is turned through the angle 
θK , a weak and a strong one. The question arises which of the two actually occurs. · · · · · · , the problem 
of determining which of the possible shocks occurs cannot be formulated and answered without taking 
the boundary conditions at infinity into account. · · · · · · If the pressure prescribed there is below an 
appropriate limit, the weak shock occurs in the corner. If, however, the pressure at the downstream end 
is sufficiently high, a strong shock may be needed for adjustment. Under appropriate circumstances this 
strong shock may begin just in the corner and thus, of the two possibilities mentioned, the one giving a 
strong shock may actually occur.

· · · · · ·
All statements made here are conjectures so far. While there is little doubt that they are in general 

correct, they should be supported, if possible, by detailed theoretical investigation.”

Thanks to great efforts made by many mathematicians in the past decades, up to now, we already have 
deep understanding for the supersonic shock solutions, see, for instance, [1–3,5,11,13,15,17,18] and references 
therein. Compared with them, to our best knowledge, the mathematical theory for the transonic shocks is 
far away from satisfied. Some progress has been made for the two-dimensional steady flows in Chen–Fang [4], 
Fang [7], Yin–Zhou [16] and, recently, Fang–Liu–Yuan [8]. In particular, in [4,7,16], it was proved that the 
transonic shock is conditionally stable under perturbation of the upstream flow and/or perturbation of 
wedge boundary. In [8], it was proved that the piece-wise constant transonic shock solution is the unique 
solution when the wedge is straight provided appropriate conditions at the vertex and downstream at the 
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