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An operator A on an lp-space is called band-dominated if it can be approximated, 
in the operator norm, by operators with a banded matrix representation. The 
coset of A in the Calkin algebra determines, for example, the Fredholmness 
of A, the Fredholm index, the essential spectrum, the essential norm and the 
so-called essential pseudospectrum of A. This coset can be identified with the 
collection of all so-called limit operators of A. It is known that this identification 
preserves invertibility (hence spectra). We now show that it also preserves norms 
and in particular resolvent norms (hence pseudospectra). In fact we work with a 
generalization of the ideal of compact operators, so-called P-compact operators, 
allowing for a more flexible framework that naturally extends to lp-spaces with 
p ∈ {1, ∞} and/or vector-valued lp-spaces.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This first section comes as a rough guide to this paper. Proper definitions and theorems are given in later 
sections.

We study bounded linear operators on a Banach space X. Most of the time, X is an lp sequence space 
with 1 ≤ p ≤ ∞, index set ZN and values in another Banach space X, so that an operator on X = lp(ZN , X)
can be identified, in a natural way, with an infinite matrix (aij) with indices i, j ∈ Z

N and all aij being 
operators X → X.

For such an operator A on X, write A ∈ K0(X, P) if its matrix (aij) has finite support (i.e. only finitely 
many nonzero entries), and write A ∈ A0(X) if its matrix is a band matrix (i.e. it has only finitely many 
nonzero diagonals). Clearly, A0(X) is an algebra containing K0(X, P) as a (two-sided) ideal. Denote the 
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closure, in the X → X operator norm, of A0(X) by A(X) and the closure of K0(X, P) by K(X, P). Then 
A(X) is a Banach algebra containing K(X, P) as a closed ideal.1

Operators in A(X) are called band-dominated operators. The ideal K(X, P) is a generalization of the set 
of compact operators: If dimX < ∞ then K(X, P) coincides with the set K(X) of all compact operators 
on X (except in the somewhat pathological cases p = 1 and p = ∞); otherwise it does not – as already 
K0(X, P) contains non-compact operators. Recall that K(X) is a closed ideal in the algebra L(X) of all 
bounded linear operators X → X.

For A ∈ A(X), the coset

A + K(X,P) in the quotient algebra A(X)/K(X,P) (1.1)

is of interest. If K(X, P) = K(X) then the quotient norm of (1.1) is the usual essential norm of A, the 
spectrum of (1.1) is the essential spectrum of A, and the invertibility of (1.1) corresponds to A being a 
Fredholm operator (i.e. having a finite-dimensional kernel and a finite-codimensional range). In the general 
case one gets generalized versions of these quantities and properties.

In either case, the coset (1.1) is an interesting but complicated object. Our strategy for its study is a 
localization technique that replaces this one complicated object by a family of many simpler objects. The 
key observation is that, by the definition of the ideal K(X, P), the coset (1.1) depends only (and exactly) 
on the asymptotic behavior of the matrix behind A. This asymptotic behavior is extracted as follows: For 
every k ∈ Z

N , let Vk : X → X denote the k-shift operator that maps (xi)i∈ZN to (yi)i∈ZN with yi+k = xi, 
and then look at the translates V−kAVk of A. The simpler objects that characterize the coset (1.1) are the 
partial limits of the family (V−kAVk)k∈ZN of all translates of A with respect to the so-called P-topology, 
to be described below, that corresponds to entry-wise norm convergence of the matrix. More precisely, if 
h = (h1, h2, . . .) is a sequence in ZN with |hn| → ∞ and V−hn

AVhn
converges in that topology then we 

denote the limit by Ah and call it the limit operator of A with respect to the sequence h. Doing this with 
all such sequences that produce a limit operator yields the collection

σop(A) := {Ah : h = (h1, h2, . . .), hn ∈ Z
N , |hn| → ∞, Ah := P-limV−hn

AVhn
exists} (1.2)

of all limit operators – the so-called operator spectrum of A. We have used sequences h to address our 
partial limits of (V−kAVk)k∈ZN . The same set (1.2) can also be constructed as follows [31,40]: Extend the 
mapping ϕA : k ∈ Z

N �→ V−kAVk ∈ A(X) P-continuously to the (Stone–Čech) boundary ∂ZN of ZN . Then 
(1.2) exactly collects the values of ϕA on ∂ZN . Enumerating the set (1.2) via ∂ZN (rather than via the 
set of all sequences h in ZN for which Ah exists) has the benefit that the index set ∂ZN is independent of 
A, so that two instances of (1.2) can be added or multiplied elementwise. Under these operations, the map 
A �→ ϕA|∂ZN = (1.2) turns out to be an algebra homomorphism. Now the crucial point is that K(X, P)
is exactly the kernel of that homomorphism A �→ (1.2), whence (1.1) �→ (1.2) is a well-defined algebra 
isomorphism.2 In short: The set (1.2) nicely reflects the coset (1.1). Actually, besides A ∈ A(X), there is 
one technical condition to make this identification between the coset (1.1) and the set (1.2) work: To make 
sure that (1.2) is large enough, we have to assume that {V−kAVk : k ∈ Z

N} has a sequential compactness 
property, namely that every sequence h in ZN with |hn| → ∞ has a subsequence g for which the P-limit Ag

exists, in which case we call A a rich operator (in the sense that (1.2) is rich enough to reflect all3 of (1.1)).

1 We will explain the notation K(X, P) later and say what P is.
2 To oversimplify matters, think of continuous functions f on a compact set D. Then the subspace (actually the ideal) C0(D)

of continuous functions with zero boundary values is the kernel of the algebra homomorphism f �→ f |∂D, whence the coset of f
modulo C0(D) can be identified with f |∂D , by the fundamental homomorphism theorem.
3 In fact, the map A �→ σop(A) = (1.2) sends some operators A ∈ A(X) to ∅. For some other A ∈ A(X), limit operators exist in 

one “direction” but not in another. Some of the latter A are not in K(X, P) but have σop(A) = {0}, such as our first example in 
Remark 3.6. These problems are eliminated by imposing existence of sufficiently many limit operators, i.e. richness of A.
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